

Chrome Coat Aerosol

HiChem Paint Technologies Pty Ltd

Chemwatch: **61-0322** Version No: **3.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **29/03/2016**Print Date: **12/12/2016**S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	hrome Coat Aerosol	
Synonyms	CC9998	
Proper shipping name	AEROSOLS	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Application is by spray atomisation from a hand held aerosol pack Apply by aerosol spray as decorative coating.

Details of the supplier of the safety data sheet

Registered company name	HiChem Paint Technologies Pty Ltd	
Address	3 Hallam South Road Hallam VIC 3803 Australia	
Telephone	3 9796 3400	
Fax	61 3 9796 4500	
Website	www.hichem.com.au	
Email	info@hichem.com.au	

Emergency telephone number

Association / Organisation	HiChem Paint Technologies	
Emergency telephone numbers	In Australia: HiChem: +61 3 9796 3400	
Other emergency telephone numbers	+800 2436 225	

CHEMWATCH EMERGENCY RESPONSE

Primary Number	Alternative Number 1	Alternative Number 2
1800 039 008	1800 039 008	+612 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	3		
Toxicity	2		0 = Minimum
Body Contact	2		1 = Low 2 = Moderate
Reactivity	1		3 = High
Chronic	3		4 = Extreme

Poisons Schedule	Not Applicable
Classification ^[1]	Aerosols Category 1, Gas under Pressure (Compressed gas), Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Reproductive Toxicity Category 1B, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Issue Date: 29/03/2016 Print Date: 12/12/2016

Label elements

GHS label elements

SIGNAL WORD	DANG
-------------	------

Hazard statement(s)

H222	Extremely flammable aerosol.		
H280	Contains gas under pressure; may explode if heated.		
H312	amful in contact with skin.		
H332	armful if inhaled.		
H315	uses skin irritation.		
H319	uses serious eye irritation.		
H360	lay damage fertility or the unborn child.		
H336	May cause drowsiness or dizziness.		
H373	May cause damage to organs through prolonged or repeated exposure.		
H412	Harmful to aquatic life with long lasting effects.		
AUH044	Risk of explosion if heated under confinement		
AUH066	Repeated exposure may cause skin dryness and cracking		

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P210	Geep away from heat/sparks/open flames/hot surfaces No smoking.	
P211	not spray on an open flame or other ignition source.	
P251	ssurized container: Do not pierce or burn, even after use.	
P260	o not breathe dust/fume/gas/mist/vapours/spray.	
P271	Jse only outdoors or in a well-ventilated area.	
P281	Use personal protective equipment as required.	
P273	Avoid release to the environment.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.	
P362	ake off contaminated clothing and wash before reuse.	
P305+P351+P338	IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P337+P313	eye irritation persists: Get medical advice/attention.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P332+P313	If skin irritation occurs: Get medical advice/attention.	

Precautionary statement(s) Storage

P405	Store locked up.	
P410+P403	otect from sunlight. Store in a well-ventilated place.	
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
68476-85-7.	20-40	hydrocarbon propellant
1330-20-7	10-30	xylene
108-88-3	10-20	toluene

Chemwatch: 61-0322 Version No: 3.1.1.1

Page 3 of 14

Chrome Coat Aerosol

Issue Date: 29/03/2016 Print Date: 12/12/2016

64742-16-1	64742-16-1 10-20 <u>hydrocarbon resin, postpolymerised with maleic anhydride</u>		
64742-95-6.	5-15	naphtha petroleum, light aromatic solvent	
7429-90-5	1-2	aluminium	

SECTION 4 FIRST AID MEASURES

Description of first aid measures

If aerosols come in contact with the eves: ▶ Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. **Eve Contact** Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Skin Contact Remove any adhering solids with industrial skin cleansing cream. **DO NOT** use solver ▶ Seek medical attention in the event of irritation. If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Inhalation Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary Transport to hospital, or doctor. Not considered a normal route of entry. ▶ If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. Ingestion Avoid giving milk or oils ► Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short term repeated exposures to xylene:

- Figure 3. Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- ▶ Pulmonary absorption is rapid with about 60-65% retained at rest.
- ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Figure phrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Sampling Time Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:

▶ Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Fire Fighting Use water delivered as a fine spray to control fire and cool adjacent area. ▶ DO NOT approach containers suspected to be hot.

- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Liquid and vapour are highly flammable.

Severe fire hazard when exposed to heat or flame.

Fire/Explosion Hazard

- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance to source of ignition.
- ▶ Heating may cause expansion or decomposition with violent container rupture.

Comments

Chemwatch: 61-0322 Page 4 of 14 Issue Date: 29/03/2016 Version No: 3.1.1.1 Print Date: 12/12/2016

Chrome Coat Aerosol

Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials ▶ Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. **HAZCHEM** Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for t	containment and cleaning up
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- ▶ Avoid smoking, naked lights or ignition sources. Safe handling Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke.
 - DO NOT incinerate or puncture aerosol cans.
 - **DO NOT** spray directly on humans, exposed food or food utensils.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area.

- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials. Other information
 - Store in a cool, dry, well ventilated area.
 - Avoid storage at temperatures higher than 40 deg C.
 - Store in an upright position.
 - Protect containers against physical damage.
 - Check regularly for spills and leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS

Conditions for safe storage, including any incompatibilities

Suitable container

Aerosol dispenser.

Chrome Coat Aerosol

Issue Date: 29/03/2016 Print Date: 12/12/2016

Storage incompatibility

- Check that containers are clearly labelled.
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hydrocarbon propellant	LPG (liquified petroleum gas)	1800 mg/m3 / 1000 ppm	Not Available	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	350 mg/m3 / 80 ppm	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	toluene	Toluene	191 mg/m3 / 50 ppm	574 mg/m3 / 150 ppm	Not Available	Sk
Australia Exposure Standards	aluminium	Aluminium (metal dust) / Aluminium (welding fumes) (as Al) / Aluminium, pyro powders (as Al)	10 mg/m3 / 5 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
hydrocarbon propellant	Liquified petroleum gas; (L.P.G.)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm
xylene	Xylenes	Not Available	Not Available	Not Available
toluene	Toluene	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
hydrocarbon propellant	19,000 [LEL] ppm	2,000 [LEL] ppm
xylene	1,000 ppm	900 ppm
toluene	2,000 ppm	500 ppm
hydrocarbon resin, postpolymerised with maleic anhydride	Not Available	Not Available
naphtha petroleum, light aromatic solvent	Not Available	Not Available
aluminium	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Issue Date: 29/03/2016 Print Date: 12/12/2016

Personal protection

Eye and face protection

Safety glasses with side shields

Chemical goggles

readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of

chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be

See Hand protection below

▶ No special equipment needed when handling small quantities.

Hands/feet protection

Skin protection

- OTHERWISE: For potentially moderate exposures:
- Wear general protective gloves, eg. light weight rubber gloves.
- For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

See Other protection below

No special equipment needed when handling small quantities.

OTHERWISE:

- Overalls.
- Skin cleansing cream.
- Other protection
- Eyewash unit.
- Do not spray on hot surfaces.
- ► The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- ▶ Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHERICK: Handbook of Reactive Chemical Hazards.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Chrome Coat Aerosol

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator	
up to 10 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1	
up to 50 x ES	Air-line*	-	-	
up to 100 x ES	-	AX-3	-	
100+ x ES	-	Air-line**	-	

* - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals

Issue Date: 29/03/2016 Print Date: 12/12/2016

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Coloured aerosol with strong odour; not miscible with water.		
Physical state	Compressed Gas	Relative density (Water = 1)	0.8
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	240
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	<-25 -150	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	<-25	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10.8	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1	Volatile Component (%vol)	85
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>1	VOC g/L	438.26

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination,

There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation of toxic gases may cause:

- ► Central Nervous System effects including depression, headache, confusion, dizziness, stupor, coma and seizures;
- respiratory: acute lung swellings, shortness of breath, wheezing, rapid breathing, other symptoms and respiratory arrest;
- ▶ heart: collapse, irregular heartbeats and cardiac arrest;
- gastrointestinal: irritation, ulcers, nausea and vomiting (may be bloody), and abdominal pain.

Inhaled Inhalation hazard is increased at higher temperatures.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal

Not normally a hazard due to physical form of product. Ingestion

Considered an unlikely route of entry in commercial/industrial environments

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Skin Contact

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Spray mist may produce discomfort

Open cuts, abraded or irritated skin should not be exposed to this material

Version No: 3.1.1.1 Chrome Coat Aerosol

Page 8 of 14 Issue Date: 29/03/2016
Print Date: 12/12/2016

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Not considered to be a risk because of the extreme volatility of the gas. Eye There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain. Harmful: danger of serious damage to health by prolonged exposure through inhalation. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. Chronic Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Principal route of occupational exposure to the gas is by inhalation. WARNING: Aerosol containers may present pres IRRITATION TOXICITY **Chrome Coat Aerosol** Not Available Not Available TOXICITY IRRITATION Inhalation (mouse) LC50: >15.6-<17.9 mm/l/2hr^[1] Not Available Inhalation (mouse) LC50: >15.6-<17.9 mm/l/2hr^[1] Inhalation (mouse) LC50: 410000 ppm/2hr^[1] Inhalation (mouse) LC50: 410000 ppm/2hr^[1] Inhalation (rat) LC50: >800000 ppm15 min^[1] Inhalation (rat) LC50: >800000 ppm15 min^[1] hydrocarbon propellant Inhalation (rat) LC50: 1354.944 mg/L15 min^[1] Inhalation (rat) LC50: 1355 mg/l15 min^[1] Inhalation (rat) LC50: 1442.738 mg/L15 min^[1] Inhalation (rat) LC50: 1442.738 mg/L15 min^[1] Inhalation (rat) LC50: 1443 mg/l15 min^[1] Inhalation (rat) LC50: 1443 mg/l15 min^[1] Inhalation (rat) LC50: 570000 ppm15 min^[1] TOXICITY IRRITATION Dermal (rabbit) LD50: >1700 $mg/kg^{[2]}$ Eye (human): 200 ppm irritant Inhalation (rat) LC50: 5000 ppm/4hr^[2] Eye (rabbit): 5 mg/24h SEVERE xylene Oral (rat) LD50: 4300 mg/kg^[2] Eye (rabbit): 87 mg mild Skin (rabbit):500 mg/24h moderate TOXICITY IRRITATION Dermal (rabbit) LD50: 12124 mg/kg^[2] Eye (rabbit): 2mg/24h - SEVERE Inhalation (rat) LC50: >26700 ppm/1hr^[2] Eye (rabbit):0.87 mg - mild toluene Inhalation (rat) LC50: 49 mg/L/4hr^[2] Eve (rabbit):100 mg/30sec - mild Oral (rat) LD50: 636 mg/kg^[2] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate hydrocarbon resin, TOXICITY IRRITATION postpolymerised with maleic Not Available Not Available anhydride TOXICITY IRRITATION Dermal (rabbit) LD50: >1900 mg/kg^[1] Not Available naphtha petroleum, light aromatic solvent Inhalation (rat) LC50: >3670 ppm/8 h *[2] Oral (rat) LD50: >4500 mg/kg^[1] TOXICITY IRRITATION aluminium Oral (rat) LD50: >2000 mg/kg^[1] Not Available 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data Legend: extracted from RTECS - Register of Toxic Effect of chemical Substances HYDROCARBON inhalation of the gas

Chemwatch: 61-0322 Page 9 of 14

Chrome Coat Aerosol

Issue Date: 29/03/2016 Version No: 3.1.1.1 Print Date: 12/12/2016

PROPELLANT

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

The substance is classified by IARC as Group 3: **XYLENE**

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Reproductive effector in rats

For toluene:

Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy

Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea. Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death

Toluene can also strip the skin of lipids causing dermatitis

Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day

Subchronic/Chronic Effects:

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm. Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin.

Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L

TOLUENE

Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in com oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day)

Developmental/Reproductive Toxicity

Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.

Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy

Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring. Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.

Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene

Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues

Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites

Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.

HYDROCARBON RESIN. POSTPOLYMERISED WITH MALEIC ANHYDRIDE

Oral (-) LD50: 7000-10000 mg/kg Nil reported. [Manufacturer]

For trimethylbenzenes:

NAPHTHA PETROLEUM, LIGHT AROMATIC

SOLVENT

routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption. 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates. Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important

drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals-Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl-benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1.2.4- and 1.3.5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Chrome Coat Aerosol

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain. Imphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop-mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs. The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm flow within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is

Chemwatch: 61-0322 Page 11 of 14 Issue Date: 29/03/2016

Version No: 3.1.1.1 Print Date: 12/12/2016 **Chrome Coat Aerosol**

considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe] HYDROCARBON PROPELLANT & No significant acute toxicological data identified in literature search. ALUMINIUM The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, **XYLENE & TOLUENE** scaling and thickening of the skin. 0 **Acute Toxicity** Carcinogenicity Skin Irritation/Corrosion Reproductivity Serious Eye STOT - Single Exposure Damage/Irritation Respiratory or Skin 0 V STOT - Repeated Exposure sensitisation Mutagenicity 0 **Aspiration Hazard** 0

Legend:

- 🗶 Data available but does not fill the criteria for classification
- Data required to make classification available
- N Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
xylene	LC50	96	Fish	2.6mg/L	2
xylene	EC50	48	Crustacea	>3.4mg/L	2
xylene	EC50	72	Algae or other aquatic plants	4.6mg/L	2
xylene	EC50	24	Crustacea	0.711mg/L	4
xylene	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
toluene	LC50	96	Fish	0.0073mg/L	4
toluene	EC50	48	Crustacea	3.78mg/L	5
toluene	EC50	72	Algae or other aquatic plants	12.5mg/L	4
toluene	BCF	24	Algae or other aquatic plants	10mg/L	4
toluene	EC50	384	Crustacea	1.533mg/L	3
toluene	NOEC	168	Crustacea	0.74mg/L	5
naphtha petroleum, light aromatic solvent	EC50	48	Crustacea	=6.14mg/L	1
naphtha petroleum, light aromatic solvent	EC50	72	Algae or other aquatic plants	3.29mg/L	1
naphtha petroleum, light aromatic solvent	EC10	72	Algae or other aquatic plants	1.13mg/L	1
naphtha petroleum, light aromatic solvent	NOEC	72	Algae or other aquatic plants	=1mg/L	1
aluminium	LC50	96	Fish	0.078-0.108mg/L	2
aluminium	EC50	48	Crustacea	0.7364mg/L	2
aluminium	EC50	96	Algae or other aquatic plants	0.0054mg/L	2
aluminium	BCF	360	Algae or other aquatic plants	9mg/L	4
aluminium	EC50	120	Fish	0.000051mg/L	5
aluminium	NOEC	72	Algae or other aquatic plants	>=0.004mg/L	2

Legend:

Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)

of 14 Issue Date: 29/03/2016
Print Date: 12/12/2016

Chrome Coat Aerosol

toluene LOW (Half-life = 28 days) LOW (Half-life = 4.33 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
xylene	MEDIUM (BCF = 740)
toluene	LOW (BCF = 90)

Mobility in soil

Ingredient	Mobility
toluene	LOW (KOC = 268)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Product / Packaging

 Where in doubt contact the responsible authority.

 Consult State Lond Wester Management Authority.
 - ► Consult State Land Waste Management Authority for disposal.
 - ▶ Discharge contents of damaged aerosol cans at an approved site.
 - Allow small quantities to evaporate.
 - ► DO NOT incinerate or puncture aerosol cans.
 - ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION

disposal

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG)

UN number	1950
UN proper shipping name	AEROSOLS
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 63 190 277 327 344 Limited quantity 1000ml

Air transport (ICAO-IATA / DGR)

All transport (to Ao-HAIA / DGK)		
UN number	1950	
UN proper shipping name	Aerosols, flammable; Aerosols, flammable (engine starting fluid)	
Transport hazard class(es)	ICAO/IATA Class 2.1 ICAO / IATA Subrisk Not Applicable ERG Code 10L	
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack	A145A167A802; A1A145A167A802 203 150 kg 203; Forbidden 75 kg; Forbidden Y203; Forbidden 30 kg G; Forbidden

Version No: 3.1.1.1

Issue Date: 29/03/2016 Print Date: 12/12/2016 **Chrome Coat Aerosol**

Sea transport (IMDG-Code / GGVSee)

UN number	1950
UN proper shipping name	AEROSOLS
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-D, S-U Special provisions 63 190 277 327 344 959 Limited Quantities 1000ml

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

HYDROCARBON PROPELLANT(68476-85-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

HYDROCARBON RESIN, POSTPOLYMERISED WITH MALEIC ANHYDRIDE(64742-16-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT(64742-95-6.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS)

ALUMINIUM(7429-90-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (toluene; hydrocarbon resin, postpolymerised with maleic anhydride; xylene; naphtha petroleum, light aromatic solvent; hydrocarbon propellant; aluminium)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (aluminium)
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
hydrocarbon propellant	68476-85-7., 68476-86-8.
naphtha petroleum, light aromatic solvent	64742-95-6., 25550-14-5.

Chemwatch: 61-0322 Page 14 of 14 Issue Date: 29/03/2016 Version No: 3.1.1.1 Print Date: 12/12/2016

Chrome Coat Aerosol

7429-90-5, 91728-14-2 aluminium

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.