SILVAGAL AEROSOL

HiChem Paint Technologies Pty Ltd

Chemwatch: 3461757
Version No: 3.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>SILVAGAL AEROSOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>SGAL 400</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>AEROSOLS</td>
</tr>
<tr>
<td>Other means of</td>
<td>Not Available</td>
</tr>
<tr>
<td>identification</td>
<td></td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses
- Application is by spray atomisation from a hand held aerosol pack
- Apply by aerosol spray as repair metallic coating over existing HICHEM SILVAGAL finishes.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>HiChem Paint Technologies Pty Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>73 Hallam South Road Hallam VIC 3803 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 3 9796 3400</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 3 9796 4500</td>
</tr>
<tr>
<td>Website</td>
<td>www.hichem.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>info@hichem.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>HiChem Paint Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>In Australia: HiChem: +61 3 9796 3400</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>+800 2436 225</td>
</tr>
</tbody>
</table>

CHEMWATCH EMERGENCY RESPONSE

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>Alternative Number 1</th>
<th>Alternative Number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 039 008</td>
<td>1800 039 008</td>
<td>+612 9186 1132</td>
</tr>
</tbody>
</table>

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Hazards Identification

Hazardous Chemical, Dangerous Goods. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Poisons Schedule

Not Applicable

Classification [1]

- Aerosols Category 1, Gas under Pressure (Compressed gas), Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Carcinogenicity Category 1A, Reproductive Toxicity Category 1B, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Continued...
Legend:

GHS label elements

SIGNAL WORD
- DANGER

Hazard statement(s)

- **H222** Extremely flammable aerosol.
- **H280** Contains gas under pressure; may explode if heated.
- **H302** Harmful if swallowed.
- **H312** Harmful in contact with skin.
- **H332** Harmful if inhaled.
- **H315** Causes skin irritation.
- **H319** Causes serious eye irritation.
- **H350** May cause cancer.
- **H360** May damage fertility or the unborn child.
- **H336** May cause drowsiness or dizziness.
- **H373** May cause damage to organs through prolonged or repeated exposure.
- **H412** Harmful to aquatic life with long lasting effects.
- **AUH044** Risk of explosion if heated under confinement

Precautionary statement(s)

Prevention

- **P201** Obtain special instructions before use.
- **P210** Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
- **P211** Do not spray on an open flame or other ignition source.
- **P251** Pressurized container: Do not pierce or burn, even after use.
- **P260** Do not breathe dust/fume/gas/mist/vapours/spray.
- **P271** Use only outdoors or in a well-ventilated area.
- **P281** Use personal protective equipment as required.
- **P270** Do not eat, drink or smoke when using this product.
- **P273** Avoid release to the environment.
- **P280** Wear protective gloves/protective clothing/eye protection/face protection.

Response

- **P300+P313** If exposed or concerned: Get medical advice/attention.
- **P362** Take off contaminated clothing and wash before reuse.
- **P304+P312** IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- **P337+P313** IF eye irritation persists: Get medical advice/attention.
- **P301+P312** IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
- **P302+P352** IF ON SKIN: Wash with plenty of soap and water.
- **P304+P340** IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
- **P330** Rinse mouth.
- **P332+P313** If skin irritation occurs: Get medical advice/attention.

Disposal

- **P401** Store locked up.
- **P410+P403** Protect from sunlight. Store in a well-ventilated place.
- **P410+P412** Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
- **P403+P233** Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s)

- **P501** Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures
Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-88-3</td>
<td>35-40</td>
<td>toluene</td>
</tr>
<tr>
<td>1330-20-7</td>
<td>5-10</td>
<td>styrene</td>
</tr>
<tr>
<td>Not Available</td>
<td>10-15</td>
<td>Polymeric Synthetic Resins.</td>
</tr>
<tr>
<td>117-81-7</td>
<td>1-5</td>
<td>di-sec-octyl phthalate</td>
</tr>
<tr>
<td>100-41-4</td>
<td>1-5</td>
<td>styrene</td>
</tr>
<tr>
<td>7429-90-5</td>
<td>1-5</td>
<td>aluminium</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>0.1-1</td>
<td>zinc</td>
</tr>
<tr>
<td>68476-85-7.</td>
<td>30-35</td>
<td>LPG (liquefied petroleum gas)</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If aerosols come in contact with the eyes:
- Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If solids or aerosol mists are deposited upon the skin:
- Flush skin and hair with running water (and soap if available).
- Remove any adhering solids with industrial skin cleansing cream.
- DO NOT use solvents.
- Seek medical attention in the event of irritation.

Inhalation
- If aerosols, fumes or combustion products are inhaled:
- Remove to fresh air.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion
- Avoid giving milk or oils.
- Avoid giving alcohol.
- Not considered a normal route of entry.
- If spontaneous vomiting appears imminent or occurs, hold patient’s head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed
- Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

 SMALL FIRE:
- Water spray, dry chemical or CO2

 LARGE FIRE:
- Water spray or fog

Special hazards arising from the substrate or mixture

Fire Incompatibility
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition with violent container rupture.
- Aerosol cans may explode on exposure to naked flames.
- Rupturing containers may rocket and scatter burning materials.
- Hazards may not be restricted to pressure effects.
- May emit acidic, poisonous or corrosive fumes.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:
- carbon dioxide (CO2)
other pyrolysis products typical of burning organic material.
Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

HAZCHEM Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

<table>
<thead>
<tr>
<th>Minor Spills</th>
<th>Major Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard - contain spillage.</td>
<td>Environmental hazard - contain spillage.</td>
</tr>
<tr>
<td>Clean up all spills immediately.</td>
<td>Clear area of personnel and move upwind.</td>
</tr>
<tr>
<td>Avoid breathing vapours and contact with skin and eyes.</td>
<td>Alert Fire Brigade and tell them location and nature of hazard.</td>
</tr>
<tr>
<td>Wear protective clothing, impervious gloves and safety glasses.</td>
<td>Avoid physical damage to containers.</td>
</tr>
<tr>
<td>Shut off all possible sources of ignition and increase ventilation.</td>
<td>Always wash hands with soap and water after handling.</td>
</tr>
<tr>
<td>Wipe up.</td>
<td>Work clothes should be laundered separately.</td>
</tr>
<tr>
<td>If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.</td>
<td>Use good occupational work practice.</td>
</tr>
<tr>
<td>Undamaged cans should be gathered and stowed safely.</td>
<td>Observe manufacturer’s storage and handling recommendations contained within this SDS.</td>
</tr>
</tbody>
</table>

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- **DO NOT** incinerate or puncture aerosol cans.
- **DO NOT** spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Store below 38 deg. C.
- Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can.

Conditions for safe storage, including any incompatibilities

- **Aerosol dispenser.**
- **Check that containers are clearly labelled.**
- **Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances.**

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

<table>
<thead>
<tr>
<th>OCCUPATIONAL EXPOSURE LIMITS (OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGREDIENT DATA</td>
</tr>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>
Australia Exposure Standards

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>Toluene</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>xylene</td>
<td>Xylenes</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>Di-sec-octyl phthalate</td>
<td>10 mg/m³</td>
<td>86 mg/m³</td>
<td>5,900 mg/m³</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>Ethyl benzene</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>zinc</td>
<td>Zinc</td>
<td>6 mg/m³</td>
<td>21 mg/m³</td>
<td>120 mg/m³</td>
</tr>
<tr>
<td>LPG (liquefied petroleum gas)</td>
<td>Liquefied petroleum gas</td>
<td>65,000 ppm</td>
<td>2.30E+05 ppm</td>
<td>4.00E+05 ppm</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- except carcinogens, work shall be undertaken in a regulated area. Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
Body protection

See Other protection below

Other protection

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located rear, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. No special equipment needed when handling small quantities.

OTHERWISE:
- Overalls
- Skin cleansing cream
- Eyewash unit.
- Do not spray on hot surfaces.

Thermal hazards

Not Available

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

SILVAGAL AEROSOL

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>BUTYL/NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>CPE</td>
<td>C</td>
</tr>
<tr>
<td>HYPALON</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL-NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE/NATURAL</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE+PVC</td>
<td>C</td>
</tr>
<tr>
<td>PE/EVAL/PE</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
<tr>
<td>PVC</td>
<td>C</td>
</tr>
<tr>
<td>PVDC/PE/PVC</td>
<td>C</td>
</tr>
<tr>
<td>SARANEX-23</td>
<td>C</td>
</tr>
<tr>
<td>SARANEX-23 2-PLY</td>
<td>C</td>
</tr>
<tr>
<td>TEFALON</td>
<td>C</td>
</tr>
<tr>
<td>VITON</td>
<td>C</td>
</tr>
<tr>
<td>VITON/CHLOROBUTYL</td>
<td>C</td>
</tr>
<tr>
<td>VITON/NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>Polyvinylidene-cyclohexyl</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

- Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Physical state</th>
<th>Relative density (Water = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coloured aerosol with a strong odour; not miscible with water.</td>
<td>Compressed Gas</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Respiratory protection

Type AX-P Filter of sufficient capacity, (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 5 x ES</td>
<td>AX-AUS / Class 1 P2</td>
<td>-</td>
<td>AX-PAPR-AUS / Class 1 P2</td>
</tr>
<tr>
<td>up to 25 x ES</td>
<td>Air-line*</td>
<td>AX-2 P2</td>
<td>AX-PAPR-2 P2</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
<td>AX-3 P2</td>
<td>-</td>
</tr>
<tr>
<td>50 x ES</td>
<td>-</td>
<td>Air-line**</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE:
- Continuous-flow;
- Continuous-flow or positive pressure demand
- Full-face

A/All classes = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(less 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Animal trials

Material tested in rabbit ear injury model,

- Teflon
- FEP (Terfelect)
- Viton
- Hypalon
- Butyl rubber
- Chlorinated polyethylene,
- Neoprene.

No irritation was recorded.

Aerosol properties

Physical state: Compressed Gas

Relative density (Water = 1): 0.8

Aerosol disposal

- Atmospheric release.
- Encapsulate aerosol in airtight bag and send to hazardous waste facility.
Odour
Not Available

Odour threshold
Not Available

PH (as supplied)
Not Applicable

Melting point/freezing point (°C)
Not Available

Initial boiling point and boiling range (°C)
< -25-150

Flash point (°C)
< 25

Evaporation rate
Not Available

Viscosity (cSt)
86

Flammability
HIGHLY FLAMMABLE.

Auto-ignition temperature (°C)
240

Decomposition temperature
Not Available

Molecular weight (g/mol)
Not Available

Taste
Not Available

Explosive properties
Not Available

Oxidising properties
Not Available

Surface Tension (dyn/cm or mN/m)
Not Available

Upper Explosive Limit (%)
10.8

Lower Explosive Limit (%)
1.0

Vapour pressure (kPa)
Not Available

Solubility in water (g/L)
Immiscible

VOC g/L
478.35

Odour threshold
Not Available

Temperature
Not Available

Oxidising properties
Not Available

pH as a solution (1%)
Not Available

Incompatible materials
Not Available

Vapour density (Air = 1)
> 1

Inflammability
Not Applicable

Initial boiling point and boiling range (°C)
< -25-150

Flash point (°C)
< 25

Initial boiling point
Not Available

Solubility in water (g/L)
Not Available

Viscosity (cSt)
86

Flammability
HIGHLY FLAMMABLE.

Auto-ignition temperature (°C)
240

Decomposition temperature
Not Available

Molecular weight (g/mol)
Not Available

Taste
Not Available

Explosive properties
Not Available

Oxidising properties
Not Available

Surface Tension (dyn/cm or mN/m)
Not Available

Upper Explosive Limit (%)
10.8

Lower Explosive Limit (%)
1.0

Vapour pressure (kPa)
Not Available

Solubility in water (g/L)
Immiscible

VOC g/L
478.35

SECTION 10 STABILITY AND REACTIVITY

Reactivity
See section 7

Chemical stability
- Elevated temperatures.
- Presence of open flame.
- Product is considered stable.
- Hazardous polymerisation will not occur.
- Presence of heat source
- Presence of an ignition source

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of toxic gases may cause:
- Central Nervous System effects including depression, headache, confusion, dizziness, stupor, coma and seizures;
- respiratory: acute lung swellings, shortness of breath, wheezing, rapid breathing, other symptoms and respiratory arrest;
- heart: collapse, irregular heartbeats and cardiac arrest;
- gastrointestinal: irritation, ulcers, nausea and vomiting (may be bloody), and abdominal pain.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in the breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death.

WARNING Intentional misuse by concentrating/inhaling contents may be lethal.

Ingestion
Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Skin Contact
Skin contact with the material may be harmful; systemic effects may result following absorption. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Spray mist may produce discomfort. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Spray mist may produce discomfort. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye
There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.

Not considered to be a risk because of the extreme volatility of the gas.
There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information. Harmful: danger of serious damage to health by prolonged exposure through inhalation.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.

Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material.

Ample evidence exists from results in experimentation, that developmental disorders are directly caused by human exposure to the material.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

WARNING: Aerosol containers may present pressure related hazards.

TOLUENE

For toluene:

Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case. Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.

Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea. Exposure to

SILVAGAL AEROSOL

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: 12124 mg/kg[^2]</td>
<td>Eye (rabbit): 2mg/24h - SEVERE</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: >26700 ppm/1hr[^2]</td>
<td>Eye (rabbit): 0.87 mg - mild</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 49 mg/L/4hr[^2]</td>
<td>Eye (rabbit): 100 mg/30sec - mild</td>
</tr>
<tr>
<td>Oral (rat) LD50: 636 mg/kg[^2]</td>
<td>Skin (rabbit): 20 mg/24h - moderate</td>
</tr>
<tr>
<td></td>
<td>Skin (rabbit): 500 mg - moderate</td>
</tr>
</tbody>
</table>

xylene

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: >1700 mg/kg[^2]</td>
<td>Eye (human): 200 ppm irritant</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 5000 ppm/4hr[^2]</td>
<td>Eye (rabbit): 5 mg/24h SEVERE</td>
</tr>
<tr>
<td>Oral (rat) LD50: 4300 mg/kg[^2]</td>
<td>Eye (rabbit): 87 mg mild</td>
</tr>
<tr>
<td></td>
<td>Skin (rabbit): 500 mg/24h moderate</td>
</tr>
</tbody>
</table>

di-sec-octyl phthalate

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: 25000 mg/kg[^2]</td>
<td>Eye (rabbit): 500 mg/24h mild</td>
</tr>
<tr>
<td>Oral (rat) LD50: 30000 mg/kg[^2]</td>
<td>Skin (rabbit): 500 mg/24h mild</td>
</tr>
</tbody>
</table>

ethylbenzene

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg[^1]</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

aluminium

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: 1130 mg/kg[^2]</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg[^1]</td>
<td></td>
</tr>
</tbody>
</table>

LPG (liquefied petroleum gas)

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation (mouse) LC50: 15.6-17.9 mm/L/2hr[^1]</td>
<td></td>
</tr>
<tr>
<td>Inhalation (mouse) LC50: 35.5 mg/L/2hr[^2]</td>
<td>Skin (rabbit): 15 mg/24h mild</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 55 mg/L/2hr[^2]</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 3500 mg/kg[^2]</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity
2. *Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances
Toluene can also strip the skin of lipids causing dermatitis. Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days.

Subchronic/Chronic Effects:
- Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm.
- Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitizer and fatal cardiotoxicin.
- Neural and cerebellar dystrophy were reported in several cases of habitual “glue sniffing.” An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neurotoxicity. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L.
- Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, pleocytosis, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).

Developmental/Reproductive Toxicity
- Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely affect the developing offspring in laboratory animals.
- Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy.
- Animals - Sterebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. C17L Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.
- Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.
- Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene.
- Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues.
- Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites.
- Reproductivity - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues.

TOLUENE & XVLENE & DI-SEC-OCTYL PHTHALATE & ETHER BENZENE & ZINC

Ethylbenzene
- Ethylbenzene is readily absorbed when inhaled, swallowed or in contact with the skin. It is distributed throughout the body, and passed out through urine. It may irritate the skin, eyes, and may cause hearing loss if exposed to high doses. Long term exposure may cause damage to the kidney, liver and lungs, including a tendency to cancer formation, according to animal testing. There is no research on its effect on sex organs and unborn babies.
- Liver changes, ulcerative tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system, cardiovascular system, urogenital system, central nervous system, eye/ear, foot/toe deformities).

LPG (LIQUEFIED PETROLEUM GAS)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Acute Toxicity</th>
<th>Carcinogenicity</th>
<th>Reproductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation of the gas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETHYLBENZENE

- Di-sec-octyl phthalate (DEHP) in animal testing has not been shown to be acutely toxic when swallowed. Very high doses may cause reduced growth and increased liver and kidney weights. In animals, DEHP does not seem to affect fertility; however it may cause birth defects (notably of the bone) and mutations.
- Workers exposed to phthalate vapours have noted pain, numbness and limb spasms after years of exposure, with inflammation of nerves and poor balance.
- The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited organelles in the cytoplasm that are found in the cells of animals, plants, fungi, and protozoa.
- The material may be irritating to the eye, with prolonged contact causing irritation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
- Available data indicate that phthalate esters are minimally toxic by swallowing, inhalation and skin contact. Repeated exposure may result in weight gain, liver enlargement and induction of liver enzymes. They may also cause shrinking of the testicles and other structural malformations. They may reduce male and female fertility and number of live births, according to animal testing.
- Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002]
- Oral (rat) NOAEL: 28.9-36.1 mg/kg/day. Gastrointestinal changes, respiratory system changes, cromomone, haemorrhage, necrotic changes in GI tract, lowered blood pressure, liver, endocrine tumours, foetotoxicity, maternal effects, specific developmental abnormalities (hepaticobiliary system, musculoskeletal system, cardiovascular system, urogenital system, central nervous system, eye/ear, foot/toe deformities).

XYLEN & XVLENE & DI-SEC-OCTYL PHTHALATE & ETHER BENZENE

- The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.
- The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

LPG & ETHYLBENZENE

- The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

ALUMINIUM & LPG (LIQUEFIED PETROLEUM GAS)

- No significant acute toxicological data identified in literature search.
Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.0073mg/L</td>
<td>4</td>
</tr>
<tr>
<td>toluene</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>3.78mg/L</td>
<td>5</td>
</tr>
<tr>
<td>toluene</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>1.25mg/L</td>
<td>4</td>
</tr>
<tr>
<td>toluene</td>
<td>BCF</td>
<td>24</td>
<td>Algae or other aquatic plants</td>
<td>10mg/L</td>
<td>4</td>
</tr>
<tr>
<td>toluene</td>
<td>EC50</td>
<td>384</td>
<td>Crustacea</td>
<td>1.53mg/L</td>
<td>3</td>
</tr>
<tr>
<td>toluene</td>
<td>NOEC</td>
<td>168</td>
<td>Crustacea</td>
<td>0.74mg/L</td>
<td>5</td>
</tr>
<tr>
<td>xylene</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>2.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>xylene</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>3.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>xylene</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>4.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>xylene</td>
<td>EC50</td>
<td>24</td>
<td>Crustacea</td>
<td>0.711mg/L</td>
<td>4</td>
</tr>
<tr>
<td>xylene</td>
<td>NOEC</td>
<td>73</td>
<td>Algae or other aquatic plants</td>
<td>0.44mg/L</td>
<td>2</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.023mg/L</td>
<td>3</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.133mg/L</td>
<td>4</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.002mg/L</td>
<td>3</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>BCF</td>
<td>24</td>
<td>Fish</td>
<td>50mg/L</td>
<td>4</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>EC60</td>
<td>504</td>
<td>Crustacea</td>
<td><0.003mg/L</td>
<td>1</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>NOEC</td>
<td>2400</td>
<td>Fish</td>
<td><0.005mg/L</td>
<td>1</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.0043mg/L</td>
<td>4</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>1.184mg/L</td>
<td>4</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>3.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>EC50</td>
<td>96</td>
<td>Crustacea</td>
<td>>0.49mg/L</td>
<td>1</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>NOEC</td>
<td>168</td>
<td>Crustacea</td>
<td>0.96mg/L</td>
<td>5</td>
</tr>
<tr>
<td>aluminium</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.078-0.108mg/L</td>
<td>2</td>
</tr>
<tr>
<td>aluminium</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.736mg/L</td>
<td>2</td>
</tr>
<tr>
<td>aluminium</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.0054mg/L</td>
<td>2</td>
</tr>
<tr>
<td>aluminium</td>
<td>BCF</td>
<td>360</td>
<td>Algae or other aquatic plants</td>
<td>9mg/L</td>
<td>4</td>
</tr>
<tr>
<td>aluminium</td>
<td>EC50</td>
<td>120</td>
<td>Fish</td>
<td>0.000051mg/L</td>
<td>5</td>
</tr>
<tr>
<td>aluminium</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>=0.004mg/L</td>
<td>2</td>
</tr>
<tr>
<td>zinc</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.00272mg/L</td>
<td>4</td>
</tr>
<tr>
<td>zinc</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.04mg/L</td>
<td>5</td>
</tr>
<tr>
<td>zinc</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>0.106mg/L</td>
<td>4</td>
</tr>
<tr>
<td>zinc</td>
<td>BCF</td>
<td>360</td>
<td>Algae or other aquatic plants</td>
<td>9mg/L</td>
<td>4</td>
</tr>
<tr>
<td>zinc</td>
<td>EC50</td>
<td>120</td>
<td>Fish</td>
<td>0.00033mg/L</td>
<td>5</td>
</tr>
<tr>
<td>zinc</td>
<td>NOEC</td>
<td>306</td>
<td>Algae or other aquatic plants</td>
<td>0.00075mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:

- Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LOW (Half-life = 28 days)</td>
<td>LOW (Half-life = 4.33 days)</td>
</tr>
<tr>
<td>xylene</td>
<td>HIGH (Half-life = 360 days)</td>
<td>LOW (Half-life = 1.83 days)</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>HIGH (Half-life = 389 days)</td>
<td>LOW (Half-life = 1.21 days)</td>
</tr>
</tbody>
</table>
Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LOW (BCF = 90)</td>
</tr>
<tr>
<td>xylene</td>
<td>MEDIUM (BCF = 740)</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>HIGH (BCF = 24500)</td>
</tr>
<tr>
<td>ethylbenzene</td>
<td>LOW (BCF = 79.43)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LOW (KOC = 268)</td>
</tr>
<tr>
<td>xylene</td>
<td>LOW (KOC = 165400)</td>
</tr>
<tr>
<td>di-sec-octyl phthalate</td>
<td>LOW (KOC = 517.8)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- **Product / Packaging disposal**
 - **DO NOT** allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.
 - Consult State Land Waste Management Authority for disposal.
 - Discharge contents of damaged aerosol cans at an approved site.
 - Allow small quantities to evaporate.
 - **DO NOT** incinerate or puncture aerosol cans.
 - Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- **Marine Pollutant**: NO
- **HAZCHEM**: Not Applicable

Land transport (ADG)

- **UN number**: 1950
- **UN proper shipping name**: AEROSOLS
- **Transport hazard class(es)**:
 - Class: 2.1
 - Subrisk: Not Applicable
- **Packing group**: Not Applicable
- **Environmental hazard**: Not Applicable
- **Special precautions for user**: Special provisions: 63 190 277 327 344
 - Limited quantity: 1000ml

Air transport (ICAO-IATA / DGR)

- **UN number**: 1950
- **UN proper shipping name**: Aerosols, flammable; Aerosols, flammable (engine starting fluid)
- **Transport hazard class(es)**:
 - ICAO/IATA Class: 2.1
 - ICAO / IATA Subrisk: Not Applicable
 - ERG Code: 10L
- **Packing group**: Not Applicable
- **Environmental hazard**: Not Applicable
- **Special precautions for user**: Special provisions: A145A167A802; A1A145A167A802
 - Cargo Only Packing Instructions: 203
 - Cargo Only Maximum Qty / Pack: 150 kg
 - Passenger and Cargo Packing Instructions: 203; Forbidden
Passenger and Cargo Maximum Qty / Pack 75 kg; Forbidden
Passenger and Cargo Limited Quantity Packing Instructions Y203; Forbidden
Passenger and Cargo Limited Maximum Qty / Pack 30 kg G; Forbidden

Sea transport (IMDG-Code / GGVSee)

UN number	1950
UN proper shipping name	AEROSOLS
Transport hazard class(es)	IMDG Class 2.1
IMDG Subrisk	Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable

Special precautions for user	EMS Number	F-D, S-U
Special provisions	63 190 277 327 344 959	
Limited Quantities	1000ml	

Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

| TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) |
| Australia Hazardous Substances Information System - Consolidated Lists | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs |

| XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) |
| Australia Hazardous Substances Information System - Consolidated Lists | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs |

| ETHYLBENZENE(100-41-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) |
| Australia Hazardous Substances Information System - Consolidated Lists | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs |

| ALUMINIUM(7429-90-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) |
| Australia Hazardous Substances Information System - Consolidated Lists | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs |

| ZINC(7440-66-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) |
| Australia Hazardous Substances Information System - Consolidated Lists | International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs |

| LPG (LIQUEFIED PETROLEUM GAS)(68476-85-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS |
| Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) |
| Australia Hazardous Substances Information System - Consolidated Lists | International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft |

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (toluene; zinc; di-sec-octyl phthalate; xylene; ethylbenzene; LPG (liquefied petroleum gas); aluminium)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (zinc; aluminium)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>
SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium</td>
<td>7429-90-5, 91728-14-2</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC — TWA: Permissible Concentration-Time Weighted Average
PC — STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.