SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>MCCFC-HB CONTAINER COATING COLOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Product code: MCCFC-HB</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

- Relevant identified uses: Use according to manufacturer’s directions. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Details of the supplier of the safety data sheet

- Registered company name: HiChem Paint Technologies Pty Ltd
- Address: 73 Hallam South Road Hallam VIC 3803 Australia
- Telephone: +61 3 9796 3400
- Fax: +61 3 9796 4500
- Website: www.hichem.com.au
- Email: info@hichem.com.au

Emergency telephone number

- Association / Organisation: HiChem Paint Technologies
- Emergency telephone numbers: In Australia: HiChem: +61 3 9796 3400
- Other emergency telephone numbers: In New Zealand: SRGS Pty Ltd: 0800 500 605

CHEMWATCH EMERGENCY RESPONSE

- Primary Number: 1800 039 008
- Alternative Number 1: 1800 039 008
- Alternative Number 2: +612 9186 1132

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL, DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Flammability</td>
</tr>
<tr>
<td>Toxicity</td>
</tr>
<tr>
<td>Body Contact</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
<tr>
<td>Chronic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Flammable Liquid Category 2, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/ Irritation Category 2, Eye Irritation Category 2A, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Aspiration Hazard Category 1</td>
</tr>
</tbody>
</table>

Hazard statement(s)

- **H225** Highly flammable liquid and vapour.
- **H312** Harmful in contact with skin.
- **H332** Harmful if inhaled.
- **H315** Causes skin irritation.
- **H319** Causes serious eye irritation.
- **H361** Suspected of damaging fertility or the unborn child.
- **H336** May cause drowsiness or dizziness.
- **H373** May cause damage to organs through prolonged or repeated exposure.
- **H304** May be fatal if swallowed and enters always.

Precautionary statement(s) Prevention

- **P201** Obtain special instructions before use.
- **P210** Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
- **P260** Do not breathe dust/fume/gas/mist/vapours/spray.
- **P271** Use in a well-ventilated area.
- **P281** Use personal protective equipment as required.
- **P240** Ground/bond container and receiving equipment.
- **P241** Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
- **P242** Use only non-sparking tools.
- **P243** Take precautionary measures against static discharge.
- **P280** Wear protective gloves/protection clothing/eye protection/face protection.

Precautionary statement(s) Response

- **P301+P310** IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
- **P305+P351+P338** IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- **P312** Call a POISON CENTER or doctor/physician if you feel unwell.
- **P313** If eye irritation persists: Get medical advice/attention.
- **P304+P340** IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
- **P332+P313** If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

- **P403+P235** Store in a well-ventilated place. Keep cool.
- **P405** Store locked up.

Precautionary statement(s) Disposal

- **P501** Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64742-89-8</td>
<td>10-30</td>
<td>naphtha petroleum, light aliphatic solvent</td>
</tr>
<tr>
<td>108-88-3</td>
<td>10-20</td>
<td>toluene</td>
</tr>
<tr>
<td>13463-67-7</td>
<td>10-20</td>
<td>titanium dioxide</td>
</tr>
</tbody>
</table>
SECTIONS 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prophylactic treatment with salbutamol and ipratropium bromide should be considered in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
 - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
 - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmaceutically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents: these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficulty breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically.
For acute or short term repeated exposures to xylene:
- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, oedema) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (PaO2 < 50 mm Hg or PaCO2 > 50 mm Hg) should be intubated.
- Arterioles compromise some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.

Biological Exposure Index (BEI)
These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylhippu-ric acids in urine</td>
<td>1.5 gm/gm creatinine</td>
<td>End of shift</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 mg/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.

Continued...
Do not approach containers suspected to be hot.
Cool fire exposed containers with water spray from a protected location.
If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
Liquid and vapour are highly flammable.
Severe fire hazard when exposed to heat, flame and/or oxidisers.
Vapour may travel a considerable distance to source of ignition.
Heating may cause expansion or decomposition leading to violent rupture of containers.
On combustion, may emit toxic fumes of carbon monoxide (CO).
Combustion products include:
- carbon dioxide (CO2)
- other pyrolysis products typical of burning organic material.
Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

Major Spills
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse/absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

The conductivity of this material may make it a static accumulator. A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10,000 pS/m. Whether a liquid is nonconductive or semi-conductive, the precautions are the same. A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.
- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:
Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.
- Check for bulging containers.
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- DO NOT allow clothing wet with material to stay in contact with skin
- Electrostatic discharge may be generated during pumping - this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

<table>
<thead>
<tr>
<th>OCCUPATIONAL EXPOSURE LIMITS (OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGREDIENT DATA</td>
</tr>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMERGENCY LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient</td>
</tr>
<tr>
<td>toluene</td>
</tr>
<tr>
<td>titanium dioxide</td>
</tr>
<tr>
<td>xylene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light aliphatic solvent</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>toluene</td>
<td>2,000 ppm</td>
<td>500 ppm</td>
</tr>
<tr>
<td>titanium dioxide</td>
<td>N.E. mg/m³ / N.E. ppm</td>
<td>5,000 mg/m³</td>
</tr>
<tr>
<td>xylene</td>
<td>1,000 ppm</td>
<td>900 ppm</td>
</tr>
</tbody>
</table>
Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

- See Hand protection below.

Hands/feet protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F793, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the
Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

MCCFC-HB CONTAINER COATING COLOURS

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>BUTYL/NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>CPE</td>
<td>C</td>
</tr>
<tr>
<td>HYPALON</td>
<td>C</td>
</tr>
<tr>
<td>NAT+NEOPR+ NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL+NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE/NATURAL</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE+PVC</td>
<td>C</td>
</tr>
<tr>
<td>PE/EVALUPE</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
<tr>
<td>PVC</td>
<td>C</td>
</tr>
<tr>
<td>PVC/PE/PVDC</td>
<td>C</td>
</tr>
<tr>
<td>SAREX-23</td>
<td>C</td>
</tr>
<tr>
<td>SAREX-23 2-PLY</td>
<td>C</td>
</tr>
<tr>
<td>TEFILON</td>
<td>C</td>
</tr>
<tr>
<td>VITON</td>
<td>C</td>
</tr>
<tr>
<td>VITON/CHLOROBUTYL</td>
<td>C</td>
</tr>
<tr>
<td>VITON/NEOPRENE</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITON</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

Gloves must be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Other protection

- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot and shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms.
- Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Thermal hazards

Not Available

Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>A-AUS / Class 1 P2</td>
<td>-</td>
<td>A-PAPR-AUS / Class 1 P2</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>A-3 P2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>Air-line**</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Continuous-flow; ** - Continuous-flow or positive pressure demand
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any colours through the respirator. The wearer may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Information on basic physical and chemical properties

Appearance

Highly flammable liquid; not miscible with water.
SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
- Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- Inhalation hazard is increased at higher temperatures.
- Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.
- Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
- Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- Inhalation hazard is increased at higher temperatures.
- Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.
- Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
- Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Ingestion
- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSG13733)
- Accidental ingestion of the material may be damaging to the health of the individual.
- Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous membranes.
- Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

Skin Contact
- Skin contact with the material may be harmful; systemic effects may result following absorption.
- The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.
- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the bloodstream through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Entry into the bloodstream through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye
- This material can cause eye irritation and damage in some persons.

Chronic
- Harmful: danger of serious damage to health by prolonged exposure through inhalation.
- This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.
- Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.
- There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.
- Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
- Constant or exposure over long periods to mixed hydrocarbons may produce stupor with diziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.
- Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]
<table>
<thead>
<tr>
<th>NAPHTHA PETROLEUM, LIGHT ALIPHATIC SOLVENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light aliphatic solvent</td>
<td></td>
</tr>
<tr>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >1900 mg/kg[^1]</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oral (rat) LD50: >4500 mg/kg[^1]</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>toluene</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: 12124 mg/kg[^2]</td>
<td>Eye (rabbit): 2mg/24h - SEVERE</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: ≥26700 ppm/1hr[^2]</td>
<td>Eye (rabbit): 0.87 mg - mild</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 49 mg/L/4hr[^2]</td>
<td>Eye (rabbit): 100 mg/30sec - mild</td>
</tr>
<tr>
<td>Oral (rat) LD50: 636 mg/kg[^2]</td>
<td>Skin (rabbit): 20 mg/24h-moderate</td>
</tr>
<tr>
<td>Skin (rabbit): 500 mg - moderate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>titanium dioxide</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: ≥2.28 mg/l/4hr[^1]</td>
<td>Skin (human): 0.3 mg /3D (int)-mild *</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: ≥3.56 mg/l/4hr[^1]</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: ≥6.82 mg/l/4hr[^1]</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 3.43 mg/l/4hr[^1]</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 5.09 mg/l/4hr[^1]</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: ≥2000 mg/kg[^1]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>xylene</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >1700 mg/kg[^2]</td>
<td>Eye (human): 200 ppm irritant</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 5000 ppm/4hr[^2]</td>
<td>Eye (rabbit): 5 mg/24h SEVERE</td>
</tr>
<tr>
<td>Oral (rat) LD50: 4300 mg/kg[^2]</td>
<td>Eye (rabbit): 87 mg mild</td>
</tr>
<tr>
<td>Skin (rabbit): 500 mg/24hr moderate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kaolinite</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. * Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

NAPHTHA PETROLEUM, LIGHT ALIPHATIC SOLVENT

- **For petroleum:**
 - This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic.
 - This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss.
 - This product contains ethyl benzene and naphtha turacene from which there is evidence of tumours in rodents.

- **Carcinogenicity:** Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans.

- **Mutagenicity:** There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays.

- **Reproductive Toxicity:** Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth-weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetuses were observed.

- **Human Effects:** Prolonged repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials.

 Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans.

TOLUENE

- **For toluene:**
 - **Acute Toxicity**
 - Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.
 - **Humans** - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

 - **Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.**

 - For toluene:
 - **Central nervous system effects** (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.
 - Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea. Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death.

 - Toluene can also strip the skin of lipids causing dermatitis

- **Animals** - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1650 ppm, 18-20 hours/day for 3 days.

Subchronic/Chronic Effects:
Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm.

Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrototoxicity and, in one case, was a cardiac sensitizer and fatal cardiotoxicity. Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L.

Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in common administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, pleirectection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).

Developmental/Reproductive Toxicity
Exposures to high levels of toluene can result in adverse effects in the developing human fetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.

Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy.

Animals - Stereotaxic alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CF1L Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.

Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.

Dermal absorption is expected to be higher upon exposure to the liquid, however, exposure is limited by the rapid evaporation of toluene.

Distribution - In studies with mice exposed to radio labeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spiral cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularized tissues.

Metabolism - The metabolites of ingested toluene include benzaldehyde and benzonic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites.

Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Exposure to titanium dioxide is via inhalation, swallowing or skin contact. When inhaled, it may deposit in lung tissue and lymph nodes causing dysfunction of the lungs and immune system. Absorption by the stomach and intestines depends on the size of the particle. It penetrated only the outermost layer of the skin, suggesting that healthy skin may be an effective barrier. There is no substantive data on genetic damage, though cases have been reported in experimental animals. Studies have differing conclusions on its cancer-causing potential.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

* IUCLID

TITANIUM DIOXIDE

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Exposure to titanium dioxide is via inhalation, swallowing or skin contact. When inhaled, it may deposit in lung tissue and lymph nodes causing dysfunction of the lungs and immune system. Absorption by the stomach and intestines depends on the size of the particle. It penetrated only the outermost layer of the skin, suggesting that healthy skin may be an effective barrier. There is no substantive data on genetic damage, though cases have been reported in experimental animals. Studies have differing conclusions on its cancer-causing potential.

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Reproductive effectors in rats

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Acute Toxicity

Skin Irritation/Corrosion

Serious Eye Damage/Irritation

Respiratory or Skin sensitisation

Mutagenicity

Carcinogenicity

Reproductivity

STOT - Single Exposure

STOT - Repeated Exposure

Aspiration Hazard

Legend:
- Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification

NOEL - No observed effect level

EC50 - The expected concentration of a substance to produce a specified effect in 50% of the test animals.

EC50 - The expected concentration of a substance to produce a specified effect in 50% of the test animals.

NOEC - The no observed effect concentration.

LC50 - The concentration of a substance that is lethal to 50% of the test animals.

EC50 - The expected concentration of a substance to produce a specified effect in 50% of the test animals.

NOEC - The no observed effect concentration.

LC50 - The concentration of a substance that is lethal to 50% of the test animals.

Source

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>6.5mg/L</td>
<td>1</td>
</tr>
<tr>
<td>aliphatic solvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naphtha petroleum, light</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>6.5mg/L</td>
<td>1</td>
</tr>
<tr>
<td>aliphatic solvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naphtha petroleum, light</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td><0.1mg/L</td>
<td>1</td>
</tr>
<tr>
<td>aliphatic solvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>toluene</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.073mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>3.78mg/L</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>12.5mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BCF</td>
<td>24</td>
<td>Algae or other aquatic plants</td>
<td>10mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

- Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification

Continued...
When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water.

Oils of any kind can cause:
- drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For Aromatic Substances Series:
Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.
Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization.
Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive.
Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthracene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LOW (Half-life = 28 days)</td>
<td>LOW (Half-life = 4.33 days)</td>
</tr>
<tr>
<td>titanium dioxide</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>xylene</td>
<td>HIGH (Half-life = 360 days)</td>
<td>LOW (Half-life = 1.83 days)</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LOW (BCF = 90)</td>
</tr>
<tr>
<td>titanium dioxide</td>
<td>LOW (BCF = 10)</td>
</tr>
<tr>
<td>xylene</td>
<td>MEDIUM (BCF = 740)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>LOW (KOC = 268)</td>
</tr>
<tr>
<td>titanium dioxide</td>
<td>LOW (KOC = 23.74)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.

Otherwise:
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a landfill specifically licenced to accept chemical and/or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.
SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td><3YE</td>
</tr>
</tbody>
</table>

Land transport (ADG)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>Class: 3, Subrisk: Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>Special provisions: 163 367, Limited quantity: 5 L</td>
</tr>
</tbody>
</table>

Air transport (ICAO-IATA / DGR)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>ICAO/IATA Class: 3, ICAO / IATA Subrisk: Not Applicable, ERG Code: 3L</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>IMDG Class: 3, IMDG Subrisk: Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>EMS Number: F-E, S-E, Special provisions: 163 367, Limited Quantities: 5 L</td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

NAPHTHA PETROLEUM, LIGHT ALIPHATIC SOLVENT(64742-89-8.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Continued...
TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
- International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

TITANIUM DIOXIDE(13463-67-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

KAOLINITE(1318-74-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Inventory of Chemical Substances (AICS)

National Inventory Status
Australia - AICS Y
Canada - DSL N (kaolinite)
Canada - NDSL N (toluene; naphtha petroleum, light aliphatic solvent; xylene)
China - IEOC Y
Europe - EINEC / ELINCS / NLP Y
Japan - ENCS N (kaolinite; naphtha petroleum, light aliphatic solvent)
Korea - KEIC Y
New Zealand - NZIoC Y
Philippines - PICCS Y
USA - TSCA Y

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
</table>

Classification of the preparation and its individual components has been drawn up by official and authoritative sources as well as independent review by the Chemwatch Classification Committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BGF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.