CVI MIXED COLOURS
HiChem Paint Technologies Pty Ltd

Chemwatch Hazard Alert Code: 3
CVI MIXED COLOURS
Chemwatch: 72-5737
Version No: 2.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>CVI MIXED COLOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>CVIMCM</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Use according to manufacturer’s directions.

Details of the supplier of the safety data sheet

Registered company name HiChem Paint Technologies Pty Ltd
Address 73 Hallam South Road Hallam VIC 3803 Australia
Telephone +61 3 9796 3400
Fax +61 3 9796 4500
Website www.hichem.com.au
Email info@hichem.com.au

Emergency telephone number

Association / Organisation HiChem Paint Technologies
Emergency telephone numbers
In Australia: HiChem: +61 3 9796 3400
Other emergency telephone numbers
In New Zealand: SRGS Pty Ltd: 0800 500 605

CHEMWATCH EMERGENCY RESPONSE

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>Alternative Number 1</th>
<th>Alternative Number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 039 008</td>
<td>1800 039 008</td>
<td>+612 9186 1132</td>
</tr>
</tbody>
</table>

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Flammability</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicity</td>
<td>2</td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
</tr>
</tbody>
</table>

Poisons Schedule S6
Classification Flammable Liquid Category 2, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Respiratory Sensitizer Category 1, Skin Sensitizer Category 1, Reproductive Toxicity Category 1B, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation)

Label elements

Continued...
GHS label elements

SIGNAL WORD DANGER
Hazard statement(s)

H225 Highly flammable liquid and vapour.
H312 Harmful in contact with skin.
H332 Harmful if inhaled.
H315 Causes skin irritation.
H319 Causes serious eye irritation.
H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H317 May cause an allergic skin reaction.
H360 May damage fertility or the unborn child.
H335 May cause respiratory irritation.

Precautionary statement(s) Prevention

P201 Obtain special instructions before use.
P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
P280 Wear protective gloves and/or protective clothing and eye protection/face protection.
P281 Use personal protective equipment as required.
P282 In case of inadequate ventilation wear respiratory protection.
P240 Ground/bond container and receiving equipment.
P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242 Use only non-sparking tools.
P243 Take precautionary measures against static discharge.
P272 Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P306+P351 IF exposed or concerned: Get medical advice/attention.
P342+P311 If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.
P362 Take off contaminated clothing and wash before reuse.
P370+P378 In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
P302+P352 IF ON SKIN: Wash with plenty of soap and water.
P305+P351+P358 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312 Call a POISON CENTER or doctor/physician if you feel unwell.
P333+P313 If skin irritation or rash occurs: Get medical advice/attention.
P337+P313 If eye irritation persists: Get medical advice/attention.
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

Precautionary statement(s) Storage

P403+P235 Store in a well-ventilated place. Keep cool.
P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1330-20-7</td>
<td>20-40</td>
<td>xylene</td>
</tr>
<tr>
<td>123-86-4</td>
<td>5-15</td>
<td>n-butyl acetate</td>
</tr>
</tbody>
</table>
Isocyanates cause airway restriction in naive individuals with the degree of response dependent on the concentration and duration of exposure. They induce smooth muscle contraction.

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
- Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.
- If spontaneous vomiting appears imminent or occurs, hold patient’s head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For sub-chronic and chronic exposures to isocyanates:
- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhalent sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Streptomycin) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers. ([Ellenhorn and Barcelou; Medical Toxicology])

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependent on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. (Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992)

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthma or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician.

Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

For acute or short term repeated exposures to xylene:
- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obduration) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Foam.
- Dry chemical powder.
Special hazards arising from the substrate or mixture

| Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result |

Advice for firefighters

| Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. |

| Fire/Explosion Hazard | Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) isocyanates and minor amounts of hydrogen cyanide nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur. Burns with acrid black smoke. |

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

| Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. |

| Major Spills | Clear area of personnel and move upward. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse/absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

| Safe handling | Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, weld or perform similar operations on or near containers. |
DO NOT allow clothing wet with material to stay in contact with skin
- Electrostatic discharge may be generated during pumping - this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (≤ 1 m/sec until fill pipe submerged to twice its diameter, then ≤ 7 m/sec).
- Avoid splash filling.
- DO NOT use compressed air for filling or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other Information
- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container
- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C); (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages.
- In addition, where inner packagings are glass and contain liquids of packaging group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.
- For alkyl aromatics:
 - The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.
 - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen.
 - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkal metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCIDENTAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>INGREDIENT DATA</th>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>Xylene</td>
<td>Xylene (o-, m-, p- isomers)</td>
<td>350 mg/m3 / 80 ppm</td>
<td>655 mg/m3 / 150 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>n-Butyl acetate</td>
<td>n-Butyl acetate</td>
<td>713 mg/m3 / 150 ppm</td>
<td>950 mg/m3 / 200 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>Hexamethylene disocyanate polymer</td>
<td>Isocyanates, all (as NCO)</td>
<td>0.02 mg/m3</td>
<td>0.07 mg/m3</td>
<td>Not Available</td>
<td>Sen</td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>Toluene</td>
<td>Toluene</td>
<td>191 mg/m3 / 50 ppm</td>
<td>574 mg/m3 / 150 ppm</td>
<td>Not Available</td>
<td>Sk</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMERGENCY LIMITS</th>
<th>Ingredient</th>
<th>Material name</th>
</tr>
</thead>
<tbody>
<tr>
<td>xylene</td>
<td>Xylenes</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- **Process controls** which involve changing the way a job activity or process is done to reduce the risk.
- **Enclosure and/or isolation** which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full-face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:
- direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dust, gas discharge (active generation into zone of rapid air motion)

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where gloves are used in conjunction with other protective equipment, such as respiratory and eye protection, the manufacturer’s instructions should be followed.

NOTE: The chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where gloves are used in conjunction with other protective equipment, such as respiratory and eye protection, the manufacturer’s instructions should be followed.

NOTE: The chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where gloves are used in conjunction with other protective equipment, such as respiratory and eye protection, the manufacturer’s instructions should be followed.

NOTE: The chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Gloves provided must only be worn from their place of work to their homes and returned. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Non-sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a combination of a conductive compound and a conductive metal insert so that the resistance of the footwear is less than 1MΩ. In some cases, a metallic sole is preferable for footwear which is intended as a means of providing electrical continuity with equipment which is connected to earth for safety.

Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overalls) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).

Material

- glove thickness and
derntility

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- Some glove polymer types are less affected by movement and this should be taken into account when selecting gloves for long-term use.

- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves should always be kept in their protective outer bag. RTV gloves should be stored in a dry environment. When not in use, gloves should be placed in a protective outer bag to prevent contamination.

Thermal hazards

Not Available

Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the “Exposure Standard” (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Respirator

Half-Face

Full-Face

Powered Air Respirator

Required Minimum Protection Factor

- up to 10 x ES
- up to 50 x ES
- up to 100 x ES
- 100+ x ES

A-PAPR/AUS / Class 1 P2
Air-line* -
Air-line** -

- A-US / Class 1 P2
- A-3 P2

* - Continuous-flow; ** - Continuous-flow or positive pressure demand

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odour; through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.

However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate national standards must be used.

Organic vapour respirators with particulate pre-filters and powered, air-purifying respirators are NOT suitable.

Personal protective equipment must be appropriately selected, individually fitted and workers...
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Highly flammable liquid.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature °C</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point °C</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range °C</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point °C</td>
<td>*22 (butyl acetate)</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>HIGHLY FLAMMABLE.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (%vol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Chemical stability
- See section 7

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
- The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness.
- Slowing of reflexes, fatigue and inco-ordination.
- Inhalation hazard is increased at higher temperatures.
- Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Ingestion
- Accidental ingestion of the material may be damaging to the health of the individual.
- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Skin Contact
- Skin contact with the material may be harmful; systemic effects may result following absorption.
- The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye
- There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.

> trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
> Air-line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.
The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates. [CCTRADE-Bayer, APMF]

Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

CVI MIXED COLOURS

<table>
<thead>
<tr>
<th>Substance</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>xylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >1700 mg/kg</td>
<td>Eye (human): 200 ppm irritant</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 5000 ppm/4hr</td>
<td>Eye (rabbit): 5 mg/24h SEVERE</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 4300 mg/kg</td>
<td>Eye (rabbit): 87 mg mild</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin (rabbit): 500 mg/24h moderate</td>
<td></td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >14080 mg/kg</td>
<td>Eye (human): 300 mg</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 2000 ppm/4hr</td>
<td>Eye (rabbit): 20 mg (open) SEVERE</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 390 ppm/4hr</td>
<td>Eye (rabbit): 20 mg/24h - moderate</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 10736 mg/kg</td>
<td>Skin (rabbit): 500 mg/24h moderate</td>
<td></td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >5000 mg/kg</td>
<td>Skin (rabbit): 500 mg - moderate</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 18.5 mg/L/1hr</td>
<td>Skin (rabbit): 500 mg - moderate</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >10000 mg/kg</td>
<td>Skin (rabbit): 500 mg - moderate</td>
<td></td>
</tr>
<tr>
<td>toluene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: 12124 mg/kg</td>
<td>Eye (rabbit): 2mg/24h - SEVERE</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: >26700 ppm/1hr</td>
<td>Eye (rabbit): 0.87 mg - mild</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 49 mg/L/1hr</td>
<td>Eye (rabbit): 100 mg/30sec - mild</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 636 mg/kg</td>
<td>Skin (rabbit): 20 mg/24h-moderate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin (rabbit): 500 mg - moderate</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

XYLENE

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Reproductive effectors in rats.

HEXAMETHYLENE DIISOCYANATE POLYMER

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke’s oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Isocyanate vapours are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

* Bayer SDS ** Ardex SDS

TOLUENE

For toluene:

Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans

- Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of...
about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case. Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and hemorrhage of the lungs and acute tubular necrosis were found on autopsy. Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days. Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea. Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death Toluene can also strip the skin of lipids causing dermatitis Animals - The initial effects are instability and incoordination, lacrimation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days.

Subchronic/Chronic Effects:
Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm. Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitizer and fatal cardiotoxicity. Neuronal and cerebellar dyskinesia were reported in several cases of habitual “glue sniffing.” An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L. Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerectio, lacrimation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-adverse-effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse-effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).

Developmental/Reproductive Toxicity
Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals. Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring. Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor. Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene. Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues. Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoic acid. o-Cresol and p-cresol formed by ring hydroxylation are considered minor metabolites Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoic acid glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.

XYLENE & N-BUTYL ACETATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

XYLENE & N-BUTYL ACETATE & HEXAMETHYLENE DIISOCYANATE POLYMER & TOLUENE

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity

- **Skin Irritation/Corrosion**
- **Serious Eye Damage/Irritation**
- **Respiratory or Skin sensitisation**
- **Mutagenicity**

![Legend:](https://via.placeholder.com/150)

- Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>xylene</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>2.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>xylene</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>3.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>xylene</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic animals</td>
<td>4.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>xylene</td>
<td>EC50</td>
<td>24</td>
<td>Crustacea</td>
<td>0.711mg/L</td>
<td>4</td>
</tr>
<tr>
<td>xylene</td>
<td>NOEC</td>
<td>73</td>
<td>Algae or other aquatic animals</td>
<td>0.44mg/L</td>
<td>2</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>18mg/L</td>
<td>2</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>32mg/L</td>
<td>1</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic animals</td>
<td>1.675mg/L</td>
<td>3</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>EC50</td>
<td>96</td>
<td>Fish</td>
<td>18mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

SECTION 12 ECOLOGICAL INFORMATION

Continued...
Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>xylene</td>
<td>HIGH (Half-life = 360 days)</td>
<td>LOW (Half-life = 1.83 days)</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>toluene</td>
<td>LOW (Half-life = 28 days)</td>
<td>LOW (Half-life = 4.33 days)</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>xylene</td>
<td>MEDIUM (BCF = 740)</td>
</tr>
<tr>
<td>n-butyl acetate</td>
<td>LOW (BCF = 14)</td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>LOW (LogKOW = 7.5796)</td>
</tr>
<tr>
<td>toluene</td>
<td>LOW (BCF = 90)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-butyl acetate</td>
<td>LOW (KOC = 20.86)</td>
</tr>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>LOW (KOC = 18560000)</td>
</tr>
<tr>
<td>toluene</td>
<td>LOW (KOC = 268)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Otherwise:
 - If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.
 - DO NOT allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.
 - Recycle wherever possible.
 - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
 - Dispose of by: burial in a land-fill specifically licenced to accept chemical and/or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material).
 - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO
- HAZCHEM: <3YE
Land transport (ADG)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>3</td>
</tr>
<tr>
<td>Subrisk</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Special precautions for user
- Special provisions: 163 367
- Limited quantity: 5 L

Air transport (ICAO-IATA / DGR)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>ICAO/IATA Class: 3</td>
</tr>
<tr>
<td>ICAO/IATA Subrisk</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>ERG Code</td>
<td>3L</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Special precautions for user
- Special provisions: A3 A72 A192
- Cargo Only Packing Instructions: 364
- Cargo Only Maximum Qty / Pack: 60 L
- Passenger and Cargo Packing Instructions: 353
- Passenger and Cargo Maximum Qty / Pack: 5 L
- Passenger and Cargo Limited Quantity Packing Instructions: Y341
- Passenger and Cargo Limited Maximum Qty / Pack: 1 L

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>IMDG Class: 3</td>
</tr>
<tr>
<td>IMDG Subrisk</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Special precautions for user
- Special provisions: F-E, S-E
- EMS Number: 163 367
- Limited Quantities: 5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
</tr>
<tr>
<td>Australia Inventory of Chemical Substances (AICS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-BUTYL ACETATE(123-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
</tr>
<tr>
<td>Australia Inventory of Chemical Substances (AICS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEXAMETHYLENE DISOCYANATE POLYMER(28182-81-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
</tr>
<tr>
<td>Australia Inventory of Chemical Substances (AICS)</td>
</tr>
</tbody>
</table>

Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring
TOLUENE (108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>Y</td>
</tr>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
<td>Y</td>
</tr>
<tr>
<td>Australia Inventory of Chemical Substances (AICS)</td>
<td>Y</td>
</tr>
<tr>
<td>International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>Y</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Y</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexamethylene diisocyanate polymer</td>
<td>28182-81-2, 53200-31-0, 1192214-73-5</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.