2P Hardener Medium ### **HiChem Paint Technologies Pty Ltd** Chemwatch: **5205-24** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements ### Chemwatch Hazard Alert Code: 2 Issue Date: **13/04/2016**Print Date: **12/10/2016**S.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | 2P Hardener Medium | |-------------------------------|--| | Synonyms | 2PHM | | Proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | Other means of identification | Not Available | ### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Use according to manufacturer's directions. Hardener. #### Details of the supplier of the safety data sheet | Registered company name | HiChem Paint Technologies Pty Ltd | Rust-Oleum Australia | Chemcare | | |-------------------------|--|--|---------------|--| | Address | 73 Hallam South Road Hallam Victoria 3803
Australia | Unit 12, 4 Southridge St. Eastern Creek NSW 2766 Australia | New Zealand | | | Telephone | +61 3 9796 3400 | Not Available | | | | Fax | +61 3 9796 4500 | +61 2 9680 0111 | Not Available | | | Website | www.hichem.com.au | www.rustoleum.com.au | Not Available | | | Email | info@hichem.com.au | sales@rustoleum.com.au | Not Available | | | | | | | | | Registered company name | (Distributor) Haydn Brush Company Ltd | | | | | Address | 2 Link Drive, Rolleston Christchurch 7675 New Zealand | | | | | Telephone | +64 347 7770 | | | | | Fax | +64 347 7789 | | | | | Website | www.haydn.co.nz | | | | | Email | mail@haydn.co.nz | | | | #### Emergency telephone number | Association / Organisation | HiChem Paint Technologies | Not Available | Not Available | |-----------------------------------|---------------------------|---------------|---------------| | Emergency telephone numbers | Not Available | 1800 039 008 | Not Available | | Other emergency telephone numbers | Not Available | Not Available | Not Available | | Association / Organisation | Not Available | | | | Emergency telephone numbers | Not Available | | | | Other emergency telephone numbers | Not Available | | | ### CHEMWATCH EMERGENCY RESPONSE | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ### **SECTION 2 HAZARDS IDENTIFICATION** Chemwatch: **5205-24**Version No: **2.1.1.1** Page 2 of 16 2P Hardener Medium Issue Date: 13/04/2016 Print Date: 12/10/2016 ### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 2 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low
2 = Moderate | | Reactivity | 1 | | 3 = High | | Chronic | 2 | | 4 = Extreme | | Poisons Schedule | S5 | |-------------------------------|---| | Classification ^[1] | Flammable Liquid Category 2, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Respiratory Sensitizer Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Acute Aquatic Hazard Category 3 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | #### Label elements GHS label elements SIGNAL WORD DANGER #### Hazard statement(s) | H225 | Highly flammable liquid and vapour. | |--------|--| | H312 | Harmful in contact with skin. | | H332 | Harmful if inhaled. | | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled. | | H317 | May cause an allergic skin reaction. | | H336 | May cause drowsiness or dizziness. | | H402 | Harmful to aquatic life | | AUH066 | Repeated exposure may cause skin dryness and cracking | #### Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | |------|---| | P261 | Avoid breathing mist/vapours/spray. | | P271 | Use only outdoors or in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P285 | In case of inadequate ventilation wear respiratory protection. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | ### Precautionary statement(s) Response | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | |----------------|--| | P342+P311 | If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician. | | P362 | Take off contaminated clothing and wash before reuse. | | P363 | Wash contaminated clothing before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | #### Precautionary statement(s) Storage P403+P235 Store in a well-ventilated place. Keep cool. Chemwatch: 5205-24 Page 3 of 16 Version No: 2.1.1.1 #### 2P Hardener Medium Issue Date: 13/04/2016 Print Date: 12/10/2016 P405 Store locked up. #### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |-------------|-----------|--| | 28182-81-2 | 30-60 | hexamethylene diisocyanate polymer | | 123-86-4 | 30-60 | n-butyl acetate | | 1330-20-7 | 10-30 | <u>xylene</u> | | 64742-95-6. | <10 | naphtha petroleum, light aromatic solvent | | | balance | Ingredients determined not to be hazardous | #### **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or
pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | ### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically. for simple esters: #### BASIC TREATMENT - Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - ► Administer oxygen by non-rebreather mask at 10 to 15 l/min. - $\,\blacktriangleright\,$ Monitor and treat, where necessary, for pulmonary oedema . - ► Monitor and treat, where necessary, for shock. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - ▶ Give activated charcoal. #### ADVANCED TREATMENT ----- - ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - > Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. Chemwatch: **5205-24** Page **4** of **16** Issue Date: **13/04/2016**Version No: **2.1.1.1** Print Date: **12/10/2016** #### 2P Hardener Medium #### EMERGENCY DEPARTMENT Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome - Consult a toxicologist as necessary BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For sub-chronic and chronic exposures to isocyanates: - This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity. - Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts - Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure. - Pulmonary symptoms include cough, burning, substernal pain and dyspnoea. - Some cross-sensitivity occurs between different isocyanates - Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line. - Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids. - Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion. - Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions. - There is no effective therapy for sensitised workers. [Ellenhorn and Barceloux; Medical Toxicology] NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992] Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed. For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - Pulmonary absorption is rapid with about 60-65% retained at rest. - Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Index Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift #### **SECTION 5 FIREFIGHTING MEASURES** ### Extinguishing media - > Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam. - Presents additional hazard when fire fighting in a confined space. - Cooling with flooding quantities of water reduces this risk - Water spray or fog may cause frothing and should be used in large quantities. - Alcohol stable foam. - Dry chemical powder - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. ### Special hazards arising from the substrate or mixture Fire Incompatibility • Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters Fire Fighting ► Alert Fire Brigade and tell them location and nature of hazard. ▶ May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. Prevent by any means available spillage from enter - Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control fire and cool adjacent area. - Use water delivered as a fine spray to control fir Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - ▶ If safe to do so, remove containers from path of fire #### ► Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. - ▶ Vapour forms an explosive mixture with air - Moderate explosion hazard when exposed to heat or flame. - Fire/Explosion Hazard Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to viole - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - ► On combustion, may emit toxic fumes of carbon monoxide (CO).
Combustion products include; carbon dioxide (CO2) carbon monoxide (CO) isocyanates and minor amounts of hydrogen cyanide nitrogen oxides (NOx) other pyrolysis products typical of burning organic materialWhen heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur Issue Date: 13/04/2016 Print Date: 12/10/2016 Burns with acrid black smoke. **HAZCHEM** •3Y #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures #### **Environmental precautions** #### Methods and material for containment and cleaning up #### Remove all ignition sources. - Clean up all spills immediately. #### Minor Spills - Avoid breathing vapours and contact with skin and eyes. - ▶ Control personal contact with the substance, by using protective equipment. - Contain and absorb small quantities with vermiculite or other absorbent material. - Wipe up. - ▶ Collect residues in a flammable waste container. - ▶ Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus SCBA should be used inside encapsulating suit where this exposure may occur. For isocyanate spills of less than 40 litres (2 m2): - Feacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible. - Notify supervision and others as necessary - Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots). - ► Control source of leakage (where applicable). - Dike the spill to prevent spreading and to contain additions of decontaminating solution. - ▶ Prevent the material from entering drains. - Estimate spill pool volume or area. - Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes - ▶ Shovel absorbent/decontaminant solution mixture into a steel drum. - ▶ Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above. - Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above - Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration. - ▶ Decontaminate and remove personal protective equipment. - ▶ Return to normal operation - Conduct accident investigation and consider measures to prevent reoccurrence. Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone. Typically, such a preparation may consist of: #### Major Spills Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}. Let stand for 24 hours Three commonly used neutralising fluids each exhibit advantages in different situations. #### Formulation A 0.2-2% liquid surfactant sodium carbonate 5-10% water to 100% Formulation B liquid surfactant concentrated ammonia water to water to 100% Formulation C ethanol, isopropanol or butanol 50% concentrated ammonia 5% 100% After application of any of these formulae, let stand for 24 hours. 0.2-2% 3-8% Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution. - Avoid contamination with water, alkalies and detergent solutions. - ▶ Material reacts with water and generates gas, pressurises containers with even drum rupture resulting. - DO NOT reseal container if contamination is suspected. - Open all containers with care. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course - ► Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources. - Increase ventilation. Chemwatch: **5205-24** Page **6** of **16** Issue Date: **13/04/2016** Version No: 2.1.1.1 2P Hardener Medium Print Date: 12/10/2016 - ▶ Stop leak if safe to do so. - ▶ Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - ▶ Use only spark-free shovels and explosion proof equipment. - ▶ Collect recoverable product into labelled containers for recycling. - ▶ Absorb remaining product with sand, earth or vermiculite - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling - Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - ▶ Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of overexposure occurs - Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ► Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. #### Safe handling Other information Suitable container - DO NOT use plastic buckets - ► Earth all lines and equipment. - Use spark-free tools when handling. - ► Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - ► Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - Store in original containers in approved flammable liquid storage area. - ► Store away from incompatible materials in a cool, dry, well-ventilated area. - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - No smoking, naked lights, heat or ignition sources. - ► Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - $\blacksquare \ \ \, \text{Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.}$ - ► Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - ► Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for leaks. - ► Observe manufacturer's storage and handling recommendations contained within this SDS. #### In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents. ### for commercial quantities of isocyanates: - ▶ Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis. - ▶ Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken. - Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions). Transfer
systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, - should be posted where necessary. Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations. #### Conditions for safe storage, including any incompatibilities - ► Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ► Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - ▶ Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. packaging is a close illuing modified plastic box and the substances are not incompatible with the plastic. Version No: 2.1.1.1 2P Hardener Medium Issue Date: 13/04/2016 Print Date: 12/10/2016 - Avoid reaction with water, alcohols and detergent solutions. - ▶ Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials. - ▶ Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds. - Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming in confined spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture. - Do NOT reseal container if contamination is expected - ▶ Open all containers with care - Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence, - ▶ Isocyanates will attack and embrittle some plastics and rubbers. - Avoid strong acids, bases - A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol. - The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. - For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition ▶ Avoid reaction with oxidising agents #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) Storage incompatibility #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------------------------------|-----------------------------|---------------------|---------------------|---------------|---------------| | Australia Exposure Standards | hexamethylene diisocyanate polymer | Isocyanates, all (as-NCO) | 0.02 mg/m3 | 0.07 mg/m3 | Not Available | Sen | | Australia Exposure Standards | n-butyl acetate | n-Butyl acetate | 713 mg/m3 / 150 ppm | 950 mg/m3 / 200 ppm | Not Available | Not Available | | Australia Exposure Standards | xylene | Xylene (o-, m-, p- isomers) | 350 mg/m3 / 80 ppm | 655 mg/m3 / 150 ppm | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---|--|------------------|------------------|------------------| | hexamethylene diisocyanate polymer | Hexamethylene diisocyanate polymer | 7.8 mg/m3 | 86 mg/m3 | 510 mg/m3 | | n-butyl acetate | Butyl acetate, n- | Not
Available | Not
Available | Not
Available | | xylene | Xylenes | Not
Available | Not
Available | Not
Available | | naphtha petroleum, light aromatic solvent | Aromatic hydrocarbon solvents; (High flash naphtha distillates; Solvent naphtha (petroleum), light aromatic) | 3.1 ppm | 34 ppm | 410 ppm | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|-----------------| | hexamethylene diisocyanate polymer | Not Available | Not Available | | n-butyl acetate | 10,000 ppm | 1,700 [LEL] ppm | | xylene | 1,000 ppm | 900 ppm | | naphtha petroleum, light aromatic solvent | Not Available | Not Available | #### Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. # Appropriate engineering controls Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area. NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|----------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|---------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | Chemwatch: **5205-24** Page **8** of **16** Issue Date: **13/04/2016**Version No: **2.1.1.1** Print Date: **12/10/2016** #### 2P Hardener Medium | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | |---|----------------------------------| | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. - ▶ All processes in which isocyanates are used should be enclosed wherever possible. - F Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards. - If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane
is sprayed. - Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards. - ▶ Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard. ### Personal protection # Eye and face protection Safety glasses with side shields.Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. #### For esters: ▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and ### dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - ► Do NOT wear natural rubber (latex gloves). - ▶ Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves. - Protective gloves and overalls should be worn as specified in the appropriate national standard. - Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated. - ► NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates - DO NOT use skin cream unless necessary and then use only minimum amount - ▶ Isocyanate vapour may be absorbed into skin cream and this increases hazard. #### Body protection Hands/feet protection See Other protection below ### Other protection All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential. Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known. Version No: 2.1.1.1 2P Hardener Medium Issue Date: 13/04/2016 Print Date: 12/10/2016 - Overalls - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - Evewash unit. - Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. Thermal hazards Not Available #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: 2P Hardener Medium | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | | TEFLON | С | | VITON | С | | VITON/BUTYL | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 5 x ES | A-AUS / Class 1 | - | A-PAPR-AUS /
Class 1 | | up to 25 x ES | Air-line* | A-2 | A-PAPR-2 | | up to 50 x ES | - | A-3 | - | | 50+ x ES | - | Air-line** | - | ^{* -} Continuous-flow; ** - Continuous-flow or positive pressure demand ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur
dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - ▶ In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard. - ▶ However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used. - Organic vapour respir ors with particulate pre-filters and powered, air-purifying respirators are NOT suitable - ▶ Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected. - Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate. #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties | Appearance | Flammable liquid with a characteristic odour; does not mix with water. | | | |--|--|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 22 (n-butyl acetate) | Taste | Not Available | Chemwatch: **5205-24** Page **10** of **16** Issue Date: **13/04/2016**Version No: **2.1.1.1** Print Date: **12/10/2016** #### 2P Hardener Medium | Evaporation rate | Not Available | Explosive properties | Not Available | |---------------------------|-------------------|----------------------------------|----------------| | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | 956.28 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertino There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics. Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed Inhalation hazard is increased at higher temperatures. #### Inhaled On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness. The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur. Prolonged exposure may cause headache, nausea and ultimately loss of consciousness. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. #### Ingestion Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed. ### Skin Contact Skin contact with the material may be harmful; systemic effects may result following absorption. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. #### Skin Contact Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ## Eve There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Comeal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. ### Chronic Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the
general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Chemwatch: **5205-24** Page **11** of **16** Issue Date: **13/04/2016** Version No: 2.1.1.1 2P Hardener Medium Print Date: 12/10/2016 There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocvanates. ICCTRADE-Baver. APMFI Animal testing shows that polymeric MDI can damage the nasal cavities and lungs, causing inflammation.and increased cell growth. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). CONTAINS free organic isocvanate. Mixing and application requires special precautions and use of personal protective gear [APMF] | 2P Hardener Medium | TOXICITY | IRRITATION | |--------------------------|---|------------------------------------| | 2P Hardener Medium | Not Available | Not Available | | | TOXICITY | IRRITATION | | xamethylene diisocyanate | Dermal (rabbit) LD50: >5000 mg/kg ^[2] | Skin (rabbit): 500 mg - moderate | | polymer | Inhalation (rat) LC50: 18.5 mg/L/1hr ^[2] | | | | Oral (rat) LD50: >10000 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >14080 mg/kg ^[1] | *[PPG] | | | Inhalation (rat) LC50: 2000 ppm/4hr ^[2] | Eye (human): 300 mg | | n-butyl acetate | Inhalation (rat) LC50: 390 ppm/4hr ^[2] | Eye (rabbit): 20 mg (open)-SEVERE | | | Oral (rat) LD50: 10736 mg/kg ^[1] | Eye (rabbit): 20 mg/24h - moderate | | | | Skin (rabbit): 500 mg/24h-moderate | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | xylene | Inhalation (rat) LC50: 5000 ppm/4hr ^[2] | Eye (rabbit): 5 mg/24h SEVERE | | | Oral (rat) LD50: 4300 mg/kg ^[2] | Eye (rabbit): 87 mg mild | | | | Skin (rabbit):500 mg/24h moderate | | | TOXICITY | IRRITATION | | naphtha petroleum, light | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Nil reported | | aromatic solvent | Inhalation (rat) LC50: >3670 ppm/8 h *[2] | | | | Oral (rat) LD50: >4500 mg/kg ^[1] | | Legend extracted from RTECS - Register of Toxic Effect of chemical Substances #### HEXAMETHYLENE DIISOCYANATE POLYMER Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. The following information refers to contact allergens as a group and may not be specific to this product. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Isocyanate vapours are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. * Bayer SDS ** Ardex SDS ### XYLENE The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. #### Reproductive effector in rats #### For trimethylbenzenes ### NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption. 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid. The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates. Chemwatch: **5205-24** Page **12** of **16** Issue Date: **13/04/2016**Version No: **2.1.1.1** Print Date: **12/10/2016** #### 2P Hardener Medium Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes. Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethyl-benzenes at 1700 ppm for 10 to 21 days **Neurotoxicity** 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested. **Subchronic/Chronic Toxicity** Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a
trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia. Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation. Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation For C9 aromatics (typically trimethylbenzenes - TMBs) Acute Toxicity Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m 3 for 12,4 and 13,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines. Irritation and Sensitization Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified. Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs. The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) or 1230 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1930 mg/m3 for systemic effects. Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutagenicity In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category Reproductive and Developmental Toxicity Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21. Systemic Effects on Parental Generations: The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when Chemwatch: **5205-24** Page **13** of **16** Issue Date: **13/04/2016**Version No: **2.1.1.1** Print Date: **12/10/2016** #### 2P Hardener Medium adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3). Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive
organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by – 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. Inhalation (rat) TCLc: 1320 ppm/6h/90D-l * [Devoe] HEXAMETHYLENE DIISOCYANATE POLYMER & N-BUTYL ACETATE & XYLENE The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. N-BUTYL ACETATE & XYLENE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis | Acute Toxicity | ✓ | Carcinogenicity | 0 | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: - X Data available but does not fill the criteria for classification - ✓ Data required to make classification available - Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |--|----------|--------------------|-------------------------------|---------------|--------| | hexamethylene diisocyanate polymer | LC50 | 96 | Fish | 0.015mg/L | 3 | | hexamethylene diisocyanate polymer | EC50 | 72 | Algae or other aquatic plants | >1000mg/L | 2 | | hexamethylene diisocyanate
polymer | EC50 | 24 | Crustacea | >=100mg/L | 2 | | n-butyl acetate | LC50 | 96 | Fish | 18mg/L | 2 | | n-butyl acetate | EC50 | 48 | Crustacea | =32mg/L | 1 | | n-butyl acetate | EC50 | 96 | Algae or other aquatic plants | 1.675mg/L | 3 | | n-butyl acetate | EC50 | 96 | Fish | 18mg/L | 2 | | n-butyl acetate | NOEC | 504 | Crustacea | 23mg/L | 2 | | xylene | LC50 | 96 | Fish | 0.0013404mg/L | 4 | | kylene | EC50 | 48 | Crustacea | >3.4mg/L | 2 | | xylene | EC50 | 72 | Algae or other aquatic plants | 4.6mg/L | 2 | | kylene | EC50 | 24 | Crustacea | 0.711mg/L | 4 | | kylene | NOEC | 73 | Algae or other aquatic plants | 0.44mg/L | 2 | | naphtha petroleum, light
aromatic solvent | EC50 | 48 | Crustacea | =6.14mg/L | 1 | | naphtha petroleum, light
aromatic solvent | EC50 | 72 | Algae or other aquatic plants | 3.29mg/L | 1 | | naphtha petroleum, light
aromatic solvent | EC10 | 72 | Algae or other aquatic plants | 1.13mg/L | 1 | | naphtha petroleum, light aromatic solvent | NOEC | 72 | Algae or other aquatic plants | =1mg/L | 1 | Chemwatch: **5205-24** Page **14** of **16** Issue Date: **13/04/2016**Version No: **2.1.1.1** Print Date: **12/10/2016** #### 2P Hardener Medium Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Harmful to aquatic organisms. For 1,2,4 - Trimethylbenzene: Half-life (hr) air: 0.48-16; Half-life (hr) H2O surface water: 0.24 -672; Half-life (hr) H2O ground: 336-1344; Half-life (hr) soil: 168-672; Henry's Pa m3 /mol: 385 -627; Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days). Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene. Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4-trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations. Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment. For Aromatic Substances Series Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs. Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrocene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------------------------|-----------------------------|-----------------------------| | hexamethylene diisocyanate polymer | нівн | HIGH | | n-butyl acetate | LOW | LOW | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------------------------------|-----------------------| | hexamethylene diisocyanate polymer | LOW (LogKOW = 7.5795) | | n-butyl acetate | LOW (BCF = 14) | | xylene | MEDIUM (BCF = 740) | ### Mobility in soil | Ingredient | Mobility | |------------------------------------|----------------------| | hexamethylene diisocyanate polymer | LOW (KOC = 18560000) | | n-butyl acetate | LOW (KOC = 20.86) | ### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ► Containers may still present a chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. ### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be
tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ► Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after Chemwatch: 5205-24 Page **15** of **16** Issue Date: 13/04/2016 Version No: 2.1.1.1 Print Date: 12/10/2016 2P Hardener Medium - admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 TRANSPORT INFORMATION** ### Labels Required | Marine Pollutant | | |------------------|----| | HAZCHEM | •3 | #### Land transport (ADG) | UN number | 1263 | | | |------------------------------|--|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 163 223 367 Limited quantity 5 L | | | #### Air transport (ICAO-IATA / DGR) | UN number | 1263 | | | |------------------------------|---|-------------|--| | UN proper shipping name | Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds) | | | | Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | | Special provisions | A3 A72 A192 | | | | Cargo Only Packing Instructions | 366 | | | | Cargo Only Maximum Qty / Pack | 220 L | | | Special precautions for user | Passenger and Cargo Packing Instructions | 355 | | | | Passenger and Cargo Maximum Qty / Pack | 60 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | | ### Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | |------------------------------|--|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | Packing group | III | | | Environmental hazard | Not Applicable | | | Special precautions for user | EMS Number F-E, S-E Special provisions 163 223 367 955 Limited Quantities 5 L | | ### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** Version No: 2.1.1.1 #### 2P Hardener Medium Issue Date: **13/04/2016**Print Date: **12/10/2016** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### HEXAMETHYLENE DIISOCYANATE POLYMER(28182-81-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring #### N-BUTYL ACETATE(123-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists #### XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs #### NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT(64742-95-6.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS) | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Y | | Canada - NDSL | N (xylene; n-butyl acetate; naphtha petroleum, light aromatic solvent) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Y | | Japan - ENCS | N (hexamethylene diisocyanate polymer) | | Korea - KECI | Υ | | New Zealand - NZIoC | Y | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |---|--------------------------------------| | hexamethylene diisocyanate polymer | 28182-81-2, 53200-31-0, 1192214-73-5 | | naphtha petroleum, light aromatic solvent | 64742-95-6., 25550-14-5. | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### Definitions and abbreviations PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancel ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.