

Acrylic Primer Surfacer

HiChem Industries (HiChem Paint Technologies)

Chemwatch: **58-0089** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 14/09/2015 Print Date: 21/09/2015 Initial Date: Not Available L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Acrylic Primer Surfacer			
Synonyms	APSG1, APSG4, APSG20			
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)			
Other means of identification Not Available				

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Applied by spray for the repair work on damaged automotive surfaces.

Details of the supplier of the safety data sheet

Registered company name	HiChem Industries (HiChem Paint Technologies)			
Address	Hallam South Road Hallam 3803 VIC Australia			
Telephone	3 9796 3400			
Fax	61 3 9796 4500			
Website	ww.hichem.com.au			
Email	info@hichem.com.au			

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	1	Vlin	Max	
Flammability	3		i	
Toxicity	2			0 = Minimum
Body Contact	2		i	1 = Low 2 = Moderate
Reactivity	1			3 = High
Chronic	3		i	4 = Extreme

Poisons Schedule	S5
GHS Classification [1]	Flammable Liquid Category 2, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Reproductive Toxicity Category 1B, STOT - SE (Resp. Irr.) Category 3, STOT - SE (Narcosis) Category 3, STOT - RE Category 2, Aspiration Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

Chemwatch: 58-0089 Page 2 of 16 Version No: 2.1.1.1

Acrylic Primer Surfacer

Issue Date: 14/09/2015 Print Date: 21/09/2015

GHS label elements

SIGNAL WORD

DANGER

Hazard statement(s)

H225	Highly flammable liquid and vapour		
H302	armful if swallowed		
H312	Harmful in contact with skin		
H332	Harmful if inhaled		
H315	Causes skin irritation		
H319	Causes serious eye irritation		
H360	May damage fertility or the unborn child		
H335	May cause respiratory irritation		
H336	May cause drowsiness or dizziness		
H373	May cause damage to organs through prolonged or repeated exposure		
H304	May be fatal if swallowed and enters airways		

Precautionary statement(s) Prevention

Tresdutionary statement(s) Frevention				
P201	Obtain special instructions before use.			
P210	Geep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.			
P260	o not breathe dust/fume/gas/mist/vapours/spray.			
P271	Use only outdoors or in a well-ventilated area.			
P281	Use personal protective equipment as required.			
P240	Ground/bond container and receiving equipment.			
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.			
P242	Use only non-sparking tools.			
P243	Take precautionary measures against static discharge.			
P270	Do not eat, drink or smoke when using this product.			
P280	Wear protective gloves/protective clothing/eye protection/face protection.			

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider			
P308+P313	IF exposed or concerned: Get medical advice/attention.			
P331	Do NOT induce vomiting.			
P362	Take off contaminated clothing.			
P363	Wash contaminated clothing before reuse.			
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P302+P352	IF ON SKIN: Wash with plenty of water and soap			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			
P330	Rinse mouth.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Version No: 2.1.1.1

Acrylic Primer Surfacer

Issue Date: **14/09/2015** Print Date: **21/09/2015**

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
108-88-3	10-<30	toluene	
14807-96-6	10-<30	talc	
Not Available	10-<30	Aliphatic Esters	
Not Available	10-<30	Aliphatic Ketones	
Not Available	10-<30	Polymeric Synthetic Resins (Non – Hazardous)	
1330-20-7	1-<10	xylene	
100-41-4	1-<10	<u>ethylbenzene</u>	
Not Available	1-<10	Coloured Pigments/Extenders (Non – Hazardous)	
Not Available	1-<10	Additives (Non – Hazardous)	
117-81-7	1-5	di-sec-octyl phthalate	

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation.
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically.

Following acute or short term repeated exposures to toluene:

- Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1/3 except in adipose where the proportion is 8/10.
- Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours.
- Primary threat to life from ingestion and/or inhalation is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Alupent, Salbutamol) are the preferred agents, with aminophylline a seco

 Lavage is indicated in patients who require decontamination; ensure use

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

NS: Non-specific determinant: also observed after exposure to other material

Chemwatch: 58-0089 Page 4 of 16 Issue Date: 14/09/2015 Version No: 2.1.1.1 Print Date: 21/09/2015

Acrylic Primer Surfacer

B: Background levels occur in specimens collected from subjects NOT exposed

For acute or short term repeated exposures to xylene:

- Figure 3. Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should $be\ established\ in\ obviously\ symptomatic\ patients.\ \ The\ lungs\ excrete\ inhaled\ solvents,\ so\ that\ hyperventilation\ improves\ clearance.$
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Sampling Time Comments Determinant Index Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- ▶ Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fire Fighting
- Fight fire from a safe distance, with adequate cover.
- ▶ If safe, switch off electrical equipment until vapour fire hazard removed.
- ▶ Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools.
- Do not approach containers susp ected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- ▶ If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

- ▶ Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include; carbon dioxide (CO2) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

- Environmental hazard contain spillage. ► Remove all ignition sources.
- ► Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Collect residues in a flammable waste container.

Environmental hazard - contain spillage. Chemical Class: aromatic hydrocarbons

For release onto land: recommended sorbents listed in order of priority.

SORBENT RANK COLLECTION LIMITATIONS APPLICATION

Major Spills

LAND SPILL - SMALL

L					
ı	Feathers - pillow	1	throw	pitchfork	DGC, RT
	cross-linked polymer - particulate	2	shovel	shovel	R,W,SS
	cross-linked polymer- pillow	2	throw	pitchfork	R, DGC, RT
	sorbent clay - particulate	3	shovel	shovel	R, I, P,

Chemwatch: 58-0089 Page 5 of 16 Issue Date: 14/09/2015 Version No: 2.1.1.1 Print Date: 21/09/2015

Acrylic Primer Surfacer

treated clay/ treated natural organic - particulate	3	shovel	shovel	R, I
wood fibre - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
treated clay/ treated natural organic - particulate	2	blower	skiploader	R, I
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
feathers - pillow	3	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- ▶ Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ► Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- ► Check for bulging containers.
- Vent periodically
- ▶ Always release caps or seals slowly to ensure slow dissipation of vapours
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- ▶ Electrostatic discharge may be generated during pumping this may result in fire.
- ► Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- ▶ Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- Safe handling Use in a well-ventilated area.
 - Prevent concentration in hollows and sumps.
 - DO NOT enter confined spaces until atmosphere has been checked.
 - Avoid smoking, naked lights, heat or ignition sources
 - When handling, DO NOT eat, drink or smoke
 - Vapour may ignite on pumping or pouring due to static electricity. DO NOT use plastic buckets

 - Earth and secure metal containers when dispensing or pouring product.
 - Use spark-free tools when handling. Avoid contact with incompatible materials.

 - Keep containers securely sealed Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.
 - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

- Store in original containers in approved flame-proof area. No smoking, naked lights, heat or ignition sources
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- ▶ Keep containers securely sealed.

Chemwatch: 58-0089 Page 6 of 16 Issue Date: 14/09/2015 Version No: 2.1.1.1

Acrylic Primer Surfacer

Print Date: 21/09/2015

- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks
- ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

- ▶ Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- ▶ In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids, alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- ► Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- ▶ Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

Suitable container

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	toluene	Toluene	191 mg/m3 / 50 ppm	574 mg/m3 / 150 ppm	Not Available	Sk
Australia Exposure Standards	talc	Soapstone (respirable dust) / Talc, (containing no asbestos fibres)	3 mg/m3 / 2.5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	350 mg/m3 / 80 ppm	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	ethylbenzene	Ethyl benzene	434 mg/m3 / 100 ppm	543 mg/m3 / 125 ppm	Not Available	Not Available
Australia Exposure Standards	di-sec-octyl phthalate	Di-sec-octyl phthalate	5 mg/m3	10 mg/m3	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
toluene	Toluene	Not Available	Not Available	Not Available
talc	Talc	2 mg/m3	2 mg/m3	2.6 mg/m3
xylene	Xylenes	Not Available	Not Available	Not Available
ethylbenzene	Ethyl benzene	Not Available	Not Available	Not Available
di-sec-octyl phthalate	Di-sec-octylphthalate	10 mg/m3	31 mg/m3	5900 mg/m3

Ingredient	Original IDLH	Revised IDLH
toluene	2,000 ppm	500 ppm
talc	N.E. mg/m3 / N.E. ppm	1,000 mg/m3
Aliphatic Esters	Not Available	Not Available
Aliphatic Ketones	Not Available	Not Available
Polymeric Synthetic Resins (Non – Hazardous)	Not Available	Not Available
xylene	1,000 ppm	900 ppm
ethylbenzene	2,000 ppm	800 [LEL] ppm
Coloured Pigments/Extenders (Non – Hazardous)	Not Available	Not Available

Chemwatch: **58-0089** Page **7** of **16** Issue Date: **14/09/2015**Version No: **2.1.1.1** Print Date: **21/09/2015**

Acrylic Primer Surfacer

Additives (Non – Hazardous)	Not Available	Not Available
di-sec-octyl phthalate	Unknown mg/m3 / Unknown ppm	5,000 mg/m3

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed: 0.25-0.5 m/s (50-100 solvent, vapours, degreasing etc., evaporating from tank (in still air). f/min.) 0.5-1 m/s aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, (100-200 pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of (200-500 rapid air motion) f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Appropriate engineering

controls

Eye and face protection

- ► Safety glasses with side shields
- Chemical goggles.
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ► Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
 - chemical resistance of glove material,
 - ▶ glove thickness and
 - dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ► When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Acrylic Primer Surfacer

Other protection: Other protection: Other protection: Other protection: Other protection: Thermal hazards Other protection: No overalls. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Acrylic Primer Surfacer

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С
##di-sec-octyl	phthalate

^{*} CPI - Chemwatch Performance Index

A: Best Selection

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1 P2	-	A-PAPR-AUS / Class 1 P2
up to 25 x ES	Air-line*	A-2 P2	A-PAPR-2 P2
up to 50 x ES	-	A-3 P2	-
50+ x ES	-	Air-line**	-

^{* -} Continuous-flow; ** - Continuous-flow or positive pressure demand

- Full-fac

 $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E = Sulfur\ dioxide(SO2),\ G = Agricultural\ chemicals,\ K = Ammonia(NH3),\ Hg = Mercury,\ NO = Oxides\ of\ nitrogen,\ MB = Methyl\ bromide,\ AX = Low\ boiling\ point\ organic\ compounds(below\ 65\ degC)$

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	A coloured highly flammable liquid with strong odour; not miscible with water.		
Physical state	Liquid	Relative density (Water = 1)	1.14
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	160
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Chemwatch: 58-0089 Page 9 of 16 Issue Date: 14/09/2015 Version No: 2.1.1.1 Print Date: 21/09/2015

Acrylic Primer Surfacer

Initial boiling point and boiling range (°C)	56-145	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	<-4	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	15	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>1	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Inhaled	Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and
	vertigo. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis
Skin Contact	Skin contact with the material may be harmful; systemic effects may result following absorption. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either • produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or • produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Comeal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Comeal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Harmful: danger of serious damage to health by prolonged exposure through inhalation. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of: - clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Chemwatch: **58-0089** Page **10** of **16** Issue Date: **14/09/2015**Version No: **2.1.1.1** Print Date: **21/09/2015**

Acrylic Primer Surfacer

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic toluene habituation occurs following intentional abuse (glue sniffing) or from occupational exposure. Ataxia, incoordination and tremors of the hands and feet (as a consequence of diffuse cerebral atrophy), headache, abnormal speech, transient memory loss, convulsions, coma, drowsiness, reduced colour perception, frank blindness, nystagmus (rapid, involuntary eye-movements), hearing loss leading to deafness and mild dementia have all been associated with chronic abuse. Peripheral nerve damage, encephalopathy, giant axonopathy electrolyte disturbances in the cerebrospinal fluid and abnormal computer tomographic (CT scans) are common amongst toluene addicts. Although toluene abuse has been linked with kidney disease, this does not commonly appear in cases of occupational toluene exposures. Cardiac and haematological toxicity are however associated with chronic toluene exposures. Cardiac arrhythmia, multifocal and premature ventricular contractions and supraventricular tachycardia are present in 20% of patients who abused toluene-containing paints. Previous suggestions that chronic toluene inhalation produced human peripheral neuropathy have been discounted. However central nervous system (CNS) depression is well documented where blood toluene exceeds 2.2 mg%. Toluene abusers can achieve transient circulating concentrations of 6.5 %. Amongst workers exposed for a median time of 29 years, to toluene, no subacute effects on neurasthenic complaints and psychometric test results could be established. The prenatal toxicity of very high toluene concentrations has been documented for several animal species and man. Malformations indicative of specific teratogenicity have not generally been found. Neonatal toxicity, described in the literature, takes the form of embryo death or delayed foetal growth and delayed skeletal system development. Permanent damage of chi

	TOXICITY	IRRITATION
Acrylic Primer Surfacer	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 12124 mg/kg ^[2]	Eye (rabbit): 2mg/24h - SEVERE
4.1	Inhalation (rat) LC50: >26700 ppm/1hd ^[2]	Eye (rabbit):0.87 mg - mild
toluene	Inhalation (rat) LC50: 49 mg/L/4H ^[2]	Eye (rabbit):100 mg/30sec - mild
	Oral (rat) LD50: 636 mg/kge ^[2]	Skin (rabbit):20 mg/24h-moderate
		Skin (rabbit):500 mg - moderate
	TOXICITY	IRRITATION
talc	Not Available	Skin (human): 0.3 mg/3d-l mild
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant
xylene	Inhalation (rat) LC50: 5000 ppm/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE
	Oral (rat) LD50: 4300 mg/kgt ^[2]	Eye (rabbit): 87 mg mild
		Skin (rabbit):500 mg/24h moderate
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: ca.15432.6 mg/kg ^[1]	Eye (rabbit): 500 mg - SEVERE
ethylbenzene	Inhalation (mouse) LC50: 35.5 mg/L/2H ^[2]	Skin (rabbit): 15 mg/24h mild
	Inhalation (rat) LC50: 55 mg/L/2H ^[2]	
	Oral (rat) LD50: 3500 mg/kgd ^[2]	
	TOXICITY	IRRITATION
di-sec-octyl phthalate	Dermal (rabbit) LD50: 25000 mg/kg ^[2]	Eye (rabbit): 500 mg/24h mild
	Oral (rat) LD50: 30000 mg/kgd ^[2]	Skin (rabbit): 500 mg/24h mild
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity: extracted from RTECS - Register of Toxic Effect of chemical Substances	2.* Value obtained from manufacturer's SDS. Unless otherwise specified data

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For tolluene:

Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.

TOLUENE Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea . Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death

Toluene can also strip the skin of lipids causing dermatitis

Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days

Subchronic/Chronic Effects:

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm.

Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted

Chemwatch: 58-0089 Page 11 of 16 Issue Date: 14/09/2015 Version No: 2.1.1.1

Acrylic Primer Surfacer

Print Date: 21/09/2015

in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin.

Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L

Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).

Developmental/Reproductive Toxicity

Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.

Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy

Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.

Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.

Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene

Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues

Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites

Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.

TALC

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

For talc (a form of magnesium silicate)

The overuse of talc in nursing infants has resulted in pulmonary oedema, pneumonia and death within hours of inhaling talcum powder. The powder dries the mucous membranes of the bronchioles, disrupts pulmonary clearance, clogs smaller airways. Victims display wheezing, rapid or difficult breathing, increased pulse, cyanosis, fever. Mild exposure may cause relatively minor inflammatory lung disease.

Long term exposure may show wheezing, weakness, productive cough, limited chest expansion, scattered rales, cyanosis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

XYLENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Reproductive effector in rats

ETHYLBENZENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylgloxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances.

Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys

Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene

In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular syncitial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland.

Chemwatch: **58-0089** Page **12** of **16** Issue Date: **14/09/2015**Version No: **2.1.1.1** Print Date: **21/09/2015**

Acrylic Primer Surfacer

In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose studies indicate that the reproductive organs are not a target for ethylbenzene toxicity Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded.

Di-sec-octyl phthalate (DEHP) is not acutely toxic in small laboratory animals via the oral route. The oral LD50 reported for mice is 26.3 g/kg; for rats, it is 33.8 g/kg. No skin irritation or sensitisation potential has been demonstrated in either animals or humans, and the lethal dermal dose in rabbits is about 25 ml/kg. Deaths in rats and chronic diffuse inflammation of the lung in mice exposed to DEHP at unspecified levels have been reported.

Long-term dietary toxicity studies in rats, guinea pigs, and dogs have established a no-effect dose level of about 60 mg/kg/day, and no carcinogenic or histologic abnormalities were observed at this level. Higher doses were associated with growth retardation and increased liver and kidney weights but not histologic abnormalities. Metabolic studies have demonstrated that laboratory animals do not appreciably metabolise DEHP. Teratogenicity studies in pregnant rats indicated that fertility is unaffected at doses of 0.1, 0.2, or 0.33 percent of the acute intraperitoneal LD50 dose for rats, although slight effects on embryonic and foetal development were observed in these animals; skeletal deformities were the most common teratogenic effects observed. Mutagenic effects were observed at intravenous doses of one-third, one-half, and two-thirds of the acute LD50; these effects are consistent with DEHP's ability to produce dominant lethal mutations.

A study of workers exposed to a mixture of the vapors of diethyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate reported that exposures to 1 to 6 ppm caused no peripheral polyneuritis. However, Russian investigators examined male and female workers exposed to between 1.7 and 66 mg/m3 of various combinations of airborne phthalates (including butyl phthalate, higher aryl phthalates, dioctyl phthalate and others) and noted complaints of pain, numbness, and spasms in the upper and lower extremities after six to seven years of exposure. Polyneuritis was observed in 32 percent of the workers studied, and 78 percent of these workers showed depression of vestibular receptors.

The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisome proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leukotriene D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Transitional Phthalate Esters: produced from alcohols with straight-chain carbon backbones of C4 to C6. This subcategory also includes a phthalate produced from benzyl alcohol as one ester group with the second ester composed of an alkyl group with a C5 carbon backbone and butyrate group. Phthalate esters containing >10% C4 to C6 molecules were conservatively included in this subcategory. Branched C7 and C8 isomers (di-iso-heptyl, di-iso-octyl and diethylhexyl phthalates) in contrast to linear dihexyl and dioctyl phthalate are members of this family.

Transitional phthalates have varied uses, but are largely used as plasticisers for PVC. Physicochemical properties also vary in that the lower molecular weight transitional phthalates are more water-soluble than higher molecular weight transitional phthalates, but none would be characterised as highly water soluble. Transitional phthalates have lower water solubility than the low molecular weight phthalates and except for butylbenzyl phthalate (BBP), existing data suggest they do not exhibit acute or chronic aquatic toxicity. What distinguishes some of the transitional phthalates from others is their greater mammalian toxicity potential, particularly with regard to reproductive and developmental effects, compared to either the low or high molecular weight phthalate subcateoories

Acute Toxicity. The available data on phthalates spanning the carbon range from C4 to C6 indicate that phthalate esters in the transitional subcategory are minimally toxic by acute oral and dermal administration. The oral LD50 value for BBP exceeds 2 g/ kg, and for materials with higher molecular weights, the LD50 values exceed the maximum amounts which can be administered to the animals in a manner consistent with the principles of responsible animal

One member of this subcategory, diethylhexyl phthalate (DEHP), has been tested for acute inhalation toxicity. It did not cause an effect at the highest concentration tested. Further, considering the low volatility of these substances, inhalation exposure at toxicologically significant levels is not anticipated. Repeated Dose Toxicity, Several substances in the C4 to C6 range, including BBP, have been tested for repeated dose toxicity in studies ranging from 3 weeks to 2 years. The principal effects found in these studies were those associated with peroxisome proliferation including liver enlargement and induction of peroxisomal enzymes. As shown in a comparative study of liver effects, the strongest inducers of peroxisome proliferation are diisononyl phthalate (DINP) and di-iso-decyl phthalate (DIDP) with substances of shorter chain length (e.g., BBP) showing much less pronounced effects. Thus it is reasonable to conclude that other members of this subcategory would show effects similar to BBP and less pronounced than DINP or DIDP. It should also be noted that the relevance of these findings to human health is, at best, questionable. It has been shown that these effects are mediated through the peroxisome proliferation-activated receptor alpha (PPARa) and that levels of PPARa are much higher in rodents than they are in humans. Thus one would expect humans to be substantially less responsive than rodents to peroxisome proliferating agents. Empirical evidence that this is true is provided by studies in primates in which repeated administration of DINP had no effects on liver, kidney or testicular parameters.

Several of the substances in the transitional phthalate esters subcategory, however, have been shown to produce testicular atrophy when given to juvenile rats at high levels. Testicular atrophy has been associated with BBP and other substances with C4 to C6 linear carbon chains. However, molecules with fewer than 4 or more than 6 carbons did not produce testicular atrophy in these studies. Although the relevance of these data are uncertain, as the testes is not a target organ for diethylhexyl phthalate (DEHP) in primates, these data do provide one of the distinguishing toxicological characteristics of this subcategory and are one of the underlying reasons supporting the differentiation of phthalate esters on the basis of length of the linear region of the carbon chain.

Genetic Toxicity (Salmonella). A number of the substances in this subcategory including the reference substance BBP has been assessed in the Salmonella and mouse lymphoma assays. All of these substances were inactive in these assays.

Chromosomal Aberrations. BBP and dihexyl phthalate (DHP) were inactive in micronucleus assays in mice. DEHP was inactive in a cytogenetics assay in rat bone marrow. Diisoheptyl phthalate was inactive in CHO cells, in vitro..

Reproductive toxicity: A series of studies assessed the structure-activity relationship of the effects of phthalate esters on fertility using a continuous breeding protocol. The test substances included in these studies were diethyl-, dipropyl-, dibutyl-, dipentyl-, d-n-hexyl-, di-2(ethylhexyl)-, and di-n-octyl phthalates. The most profound effects were on fertility (i.e., number of females delivering/ number mated) and number of live births. The substance showing the greatest activity was DEHP which produced effects at dietary levels of 0.1 % with a no effect level of 0.01 %. The next most active compounds were di-n-hexyl- and di-n-pentyl phthalate which showed effects in the range of 0.3 to 0.5 %; no effect levels were not experimentally defined. Dipropyl phthalate had an effect on live birth index at 2.5 % but produced no effects at 1.25 %. Diethyl phthalate and di-n-octyl phthalate were inactive at the highest levels tested, 2.5 % and 5.0 %, respectively. These data demonstrated that molecules with linear alkyl chains of 4 to 6 carbons profoundly affect fertility in rodents, with DEHP being the most active. Molecules with longer or shorter side chains are essentially inactive in these assays. These data were also a basis for the separation of phthalates into three categories based on length of side chain.

In addition to these data there are reproductive toxicity studies on BBP and DEHP.

A 2-generation reproductive study was conducted in rats in which BBP was administered via the diet. Parental effects were limited to changes in body weight, weight gain, and increased absolute and relative liver weights. In the F1 parents, treatment with BBP affected mating and fertility indices and sperm number and motility. The F1 male offspring exhibited shortened anogenital distance, delayed acquisition of puberty and retention of nipples and areolae as well as reproductive effects. The NOAEL of the study was reported to be 3750 mg/ kg for reproductive effects. However, for male F1 and F2 offspring, the NOEL for reproductive effects was reported to be 50 mg/ kg based on reductions in anogenital distance. These studies along with previous data provide a good basis to assess the reproductive effects of C4 to C6 phthalate esters. Although several substances (diheptyl, heptyl nonyl, heptyl undecyl) have ester

DI-SEC-OCTYL PHTHALATE Chemwatch: **58-0089** Page **13** of **16** Issue Date: **14/09/2015**Version No: **2.1.1.1** Print Date: **21/09/2015**

Acrylic Primer Surfacer

side chain constituents that predominately fall in the high molecular weight subcategory, these substances are conservatively assumed to exhibit reproductive effects similar to other transitional phthalates.

Developmental toxicity: There have been extensive studies of the developmental toxicity of BBP and DEHP. These substances produce structural malformations and also affect male reproductive development. No effect levels are in the range of 50 to 300 mg/ kg bw/ day. There is also an unpublished developmental toxicity study of di-isoheptyl phthalate (DIHP). The results of these studies are broadly consistent with the structure-activity relationships previously described, i.e., that phthalate esters with linear carbon chains of C4 to C6 carbons produce much more profound effects that either shorter or longer molecules.

Phthalate esters with >10% C4 to C6 isomers were conservatively placed in the transitional subcategory. This conclusion is supported by developmental test data on "711P"" (which showed structural malformations in rats at 1000 mg/ kg/ day with a NOAEL of 200 mg/ kg/ day ."711P" is an equal composition mixture of six phthalate esters consisting of linear and methyl-branched C7, C9, and C11 ester side chains. This test substance is considered by EPA under the following CAS Numbers.: 68515-44-6 (di C7), 68515-44-7 (di C9), 3648-20-2 (di C1 I), 111381-89-6 (C7, C9), 111381-90-9 (C7, C11), and 111381-91-0 (C9, C11). The overall content of C4 to C6 isomers in "71 1P" is approximately 10%, based on the contribution from methyl-branched C7 isomers e.g., di C7 (30% C4-C6); C7, C9 (15% C4-C6); and C7, C11 (15 % C4-C6). Test data on 711P were used selectively as read-across data to the C7-containing substances in the mixture, based on the C4 to C6 content of each substance in the mixture.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen

[National Toxicology Program: U.S. Dep. of Health & Human Services 2002]

Oral (rat) NOAEL: 28.9-36.1 mg/kg/day Gastrointestinal changes, respiratory system changes, somnolence, haemorrhage, necrotic changes in GI tract, lowered blood pressure, liver, endocrine tumours, foetotoxicity, paternal effects, maternal effects, specific developmental abnormalities (hepatobiliary system, musculoskeletal system, cardiovascular system, urogenital system, central nervous system, eye/ear), foetolethality recorded.

Acute Toxicity	✓	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	~
Mutagenicity	0	Aspiration Hazard	✓

Legend:

✓ – Data required to make classification available

— Data available but does not fill the criteria for classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

NOT AVAILABLE

Ingredient	Endpoint	Test Duration	Effect	Value	Species	BCF
toluene	Not Available					
talc	Not Available					
Aliphatic Esters	Not Available					
Aliphatic Ketones	Not Available					
Polymeric Synthetic Resins (Non – Hazardous)	Not Available					
xylene	Not Available					
ethylbenzene	Not Available					
Coloured Pigments/Extenders (Non – Hazardous)	Not Available					
Additives (Non – Hazardous)	Not Available					
di-sec-octyl phthalate	Not Available					

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthroene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)

 Chemwatch: 58-0089
 Page 14 of 16
 Issue Date: 14/09/2015

 Version No: 2.1.1.1
 Print Date: 21/09/2015

Acrylic Primer Surfacer

xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
ethylbenzene	HIGH (Half-life = 228 days)	LOW (Half-life = 3.57 days)
di-sec-octyl phthalate	HIGH (Half-life = 389 days)	LOW (Half-life = 1.21 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
toluene	LOW (BCF = 90)
xylene	MEDIUM (BCF = 740)
ethylbenzene	LOW (BCF = 79.43)
di-sec-octyl phthalate	HIGH (BCF = 24500)

Mobility in soil

Ingredient	Mobility
toluene	LOW (KOC = 268)
ethylbenzene	LOW (KOC = 517.8)
di-sec-octyl phthalate	LOW (KOC = 165400)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ► Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and MSDS and observe all notices pertaining to the product.
- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains

Product / Packaging disposal

- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility
 can be identified.
- ► Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	•3YE

Land transport (ADG)

UN number	1263
Packing group	П
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Environmental hazard	No relevant data
Transport hazard class(es)	Class 3 Subrisk Not Applicable
Special precautions for user	Special provisions 163 * Limited quantity 5 L

Air transport (ICAO-IATA / DGR)

UN number	1263
Packing group	II .
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)
Environmental hazard	No relevant data

Chemwatch: **58-0089** Page **15** of **16** Issue Date: 14/09/2015 Version No: 2.1.1.1 Print Date: 21/09/2015

Acrylic Primer Surfacer

	ICAO/IATA Class	3	
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	3L	
	Special provisions		A3 A72 A192
Special precautions for user	Cargo Only Packing Instructions		364
	Cargo Only Maximum Qty / Pack		60 L
	Passenger and Cargo Packing Instructions		353
	Passenger and Cargo Maximum Qty / Pack		5 L
	Passenger and Cargo Limited Quantity Packing Instructions		Y341
	Passenger and Cargo	Limited Maximum Qty / Pack	1 L

Sea transport (IMDG-Code / GGVSee)

UN number	1263
Packing group	П
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Environmental hazard	Not Applicable
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
Special precautions for user	EMS Number F-E , S-E Special provisions 163 Limited Quantities 5 L

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	toluene	Υ
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	xylene	Y
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	ethylbenzene	Υ
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	di-sec-octyl phthalate	x

SECTION 15 REGULATORY INFORMATION

Australia Hazardous Substances Information System - Consolidated Lists

Safety, health and environmental regulations / legislation specific for the substance or mixture

TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS			
	Australia Inventory of Chamical Cubatanasa (AICC)		
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)		
Australia Hazardous Substances Information System - Consolidated Lists	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs		
TALC(14807-96-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS			
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)		
Australia Hazardous Substances Information System - Consolidated Lists	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs		
XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS			
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)		
Australia Hazardous Substances Information System - Consolidated Lists	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs		
ETHYLBENZENE(100-41-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS			
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)		
Australia Hazardous Substances Information System - Consolidated Lists	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs		
DI-SEC-OCTYL PHTHALATE(117-81-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS			
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)		

Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

Chemwatch: 58-0089 Page 16 of 16 Issue Date: 14/09/2015 Version No: 2.1.1.1 Print Date: 21/09/2015

Acrylic Primer Surfacer

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (toluene; talc; di-sec-octyl phthalate; xylene; ethylbenzene)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	Υ
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.